Materials informatics approach to understand aluminum alloys

被引:15
作者
Tamura, Ryo [1 ,2 ]
Watanabe, Makoto [3 ]
Mamiya, Hiroaki [4 ]
Washio, Kota [5 ]
Yano, Masao [5 ]
Danno, Katsunori [5 ]
Kato, Akira [5 ]
Shoji, Tetsuya [5 ]
机构
[1] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba, Ibaraki, Japan
[3] Natl Inst Mat Sci, Res Ctr Struct Mat, Tsukuba, Ibaraki, Japan
[4] Natl Inst Mat Sci, Res Ctr Adv Measurement & Characterizat, Tsukuba, Ibaraki, Japan
[5] Toyota Motor Co Ltd, Higashifuji Tech Ctr, Shizuoka, Japan
关键词
Materials informatics; aluminum alloys; Markov chain Monte Carlo; DESIGN; PREDICTION;
D O I
10.1080/14686996.2020.1791676
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The relations between the mechanical properties, heat treatment, and compositions of elements in aluminum alloys are extracted by a materials informatics technique. In our strategy, a machine learning model is first trained by a prepared database to predict the properties of materials. The dependence of the predicted properties on explanatory variables, that is, the type of heat treatment and element composition, is searched using a Markov chain Monte Carlo method. From the dependencies, a factor to obtain the desired properties is investigated. Using targets of 5000, 6000, and 7000 series aluminum alloys, we extracted relations that are difficult to find via simple correlation analysis. Our method is also used to design an experimental plan to optimize the materials properties while promoting the understanding of target materials.
引用
收藏
页码:540 / 551
页数:12
相关论文
共 47 条
[1]  
[Anonymous], H0001 JIS
[2]  
[Anonymous], 2107 ISO
[3]   Materials Prediction via Classification Learning [J].
Balachandran, Prasanna V. ;
Theiler, James ;
Rondinelli, James M. ;
Lookman, Turab .
SCIENTIFIC REPORTS, 2015, 5
[4]  
Boslaugh S., 2012, Statistics in a Nutshell
[5]   Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling [J].
Carrete, Jesus ;
Li, Wu ;
Mingo, Natalio ;
Wang, Shidong ;
Curtarolo, Stefano .
PHYSICAL REVIEW X, 2014, 4 (01)
[6]  
Davis JR., 1993, ALUMINUM ALUMINUM AL
[7]   MDTS: automatic complex materials design using Monte Carlo tree search [J].
Dieb, Thaer M. ;
Ju, Shenghong ;
Yoshizoe, Kazuki ;
Hou, Zhufeng ;
Shiomi, Junichiro ;
Tsuda, Koji .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2017, 18 (01) :498-503
[8]  
Durrheim K., 2004, NUMBERS HYPOTHESES C
[9]   emcee: The MCMC Hammer [J].
Foreman-Mackey, Daniel ;
Hogg, David W. ;
Lang, Dustin ;
Goodman, Jonathan .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2013, 125 (925) :306-312
[10]   Learning physical descriptors for materials science by compressed sensing [J].
Ghiringhelli, Luca M. ;
Vybiral, Jan ;
Ahmetcik, Emre ;
Ouyang, Runhai ;
Levchenko, Sergey V. ;
Draxl, Claudia ;
Scheffler, Matthias .
NEW JOURNAL OF PHYSICS, 2017, 19