Image denoising with Gaussian mixture model

被引:12
作者
Cao, Yang [1 ]
Luo, Yupin [1 ]
Yang, Shiyuan [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 3, PROCEEDINGS | 2008年
关键词
D O I
10.1109/CISP.2008.312
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a Gaussian mixture model (GMM) based method for image denoising. The method partitions an image into a set of overlapping patches, and assumes that the image patches are random,, variables described by a GMM. The distribution parameters of the noise free image patches are estimated from the noisy parameters which are calculated by expectation maximization (EM). Minimum mean square error (MMSE) estimation technique is used to estimate the clean image patches. The experimental results show that new method can effectively suppress additive noise and preserve details of image signal.
引用
收藏
页码:339 / 343
页数:5
相关论文
共 8 条
[1]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[2]  
CHEN T, 2005, MATH MODELS COMPUTER
[3]  
ELMZOUGHI A, 2005, ACOUSTICS SPEECH SIG, V2, P45
[4]   Unifying probabilistic and variational estimation [J].
Hamza, AB ;
Krim, H ;
Unal, GB .
IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (05) :37-47
[5]  
LEI Z, 2005, CIRCUITS SYSTEMS VID, V15, P469
[6]  
Muresan DD, 2003, IEEE IMAGE PROC, P101
[7]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[8]   Universal discrete denoising:: Known channel [J].
Weissman, T ;
Ordentlich, E ;
Seroussi, G ;
Verdú, S ;
Weinberger, MJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :5-28