A monotone finite volume scheme for advection-diffusion equations on distorted meshes

被引:34
|
作者
Wang, Shuai [1 ]
Yuan, Guangwei [2 ]
Li, Yonghai [3 ]
Sheng, Zhiqiang [2 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[2] Inst Appl Phys & Computat Math, Natl Key Lab Sci & Technol Computat Phys, Beijing 100088, Peoples R China
[3] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
advection-dominated; diffusion-dominated; finite volume method; discrete maximum principle; nonlinear two-point flux; monotone method;
D O I
10.1002/fld.2640
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new monotone finite volume method with second-order accuracy is presented for the steady-state advectiondiffusion equation. The method uses a nonlinear approximation for both diffusive and advective fluxes that guarantee the positivity of the numerical solution. The approximation of the diffusive flux is based on nonlinear two-point approximation, and the approximation of the advective flux is based on the second-order upwind method with proper slope limiter. The second-order convergence rate for concentration and the monotonicity of the nonlinear finite volume method are verified with numerical experiments. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1283 / 1298
页数:16
相关论文
共 50 条
  • [1] A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes
    Lipnikov, K.
    Svyatskiy, D.
    Vassilevski, Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) : 4017 - 4032
  • [2] A Finite Volume Scheme for Diffusion Equations on Distorted Quadrilateral Meshes
    Sheng, Zhiqiang
    Yuan, Guangwei
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2008, 37 (2-4): : 171 - 207
  • [3] A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D
    Nikitin, K.
    Vassilevski, Yu.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2010, 25 (04) : 335 - 358
  • [4] MONOTONE FINITE VOLUME SCHEMES OF NONEQUILIBRIUM RADIATION DIFFUSION EQUATIONS ON DISTORTED MESHES
    Sheng, Zhiqiang
    Yue, Jingyan
    Yuan, Guangwei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 2915 - 2934
  • [5] Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes
    Yuan, Guangwei
    Sheng, Zhiqiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) : 1170 - 1189
  • [6] Error estimates for a finite volume scheme for advection-diffusion equations with rough coefficients
    Navarro-Fernandez, Victor
    Schlichting, Andre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2131 - 2158
  • [7] Application of Nonlinear Monotone Finite Volume Schemes to Advection-Diffusion Problems
    Vassilevski, Yuri
    Danilov, Alexander
    Kapyrin, Ivan
    Nikitin, Kirill
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 761 - 769
  • [8] A monotone finite volume scheme for diffusion equations on general non-conforming meshes
    Zhang, Qi
    Sheng, Zhiqiang
    Yuan, Guangwei
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 300 - 313
  • [9] A novel finite volume discretization method for advection-diffusion systems on stretched meshes
    Merrick, D. G.
    Malan, A. G.
    van Rooyen, J. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 362 : 220 - 242
  • [10] Monotone finite volume schemes for diffusion equations on polygonal meshes
    Yuan, Guangwei
    Sheng, Zhiqiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) : 6288 - 6312