A distributed-parameter electromechanical coupling model for a piezoelectric energy harvester with variable curvature

被引:11
作者
Wang, Biao [1 ]
Li, Zhongjie [2 ]
Yang, Zhengbao [1 ,3 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[2] Shanghai Univ, Sch Mechatron Engn & Automat, 99 Shangda Rd, Shanghai 200444, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
energy harvesting; variable curvature; curved beam; electromechanical modeling; Rayleigh-Ritz method; CURVED BEAMS; PERFORMANCE; POWER; DESIGN; EFFICIENCY;
D O I
10.1088/1361-665X/abad4e
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Enabling technologies for harvesting ambient vibration energy have attracted considerable attention in research communities from different disciplines in the last decades. Among the various devices, straight cantilever-based energy harvesters have been widely investigated from the perspective of designs, modeling, simulation and experiments. In this study, we propose curved piezoelectric energy harvesters (PEHs) with variable curvature to further broaden application scenarios. Within the framework of the Euler-Bernoulli beam theory, we develop a distributed-parameter electromechanical coupling model for a curved segmented unimorph with variable curvature by Hamilton's Principle and solve it using the Rayleigh-Ritz method. The convergence and accuracy of the model are validated by finite element simulation and experiments. Based on the proposed model, we perform a systematic parameter study and discuss the effects of the proof mass, Young's modulus of the substrate, the thickness ratio of the substrate to the total thickness, the curvature of the substrate and the piezo patch on the mechanical and electrical responses of the structures. The theoretical model will help engineers to design and optimize new PEHs and serve as a benchmark solution for future research in this field.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation [J].
Ajitsaria, J. ;
Choe, S. Y. ;
Shen, D. ;
Kim, D. J. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (02) :447-454
[2]   A Timoshenko like model for piezoelectric energy harvester with shear mode [J].
Banerjee, Shreya ;
Roy, Sitikantha .
COMPOSITE STRUCTURES, 2018, 204 :677-688
[3]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[4]   Design and performance of variable-shaped piezoelectric energy harvesters [J].
Ben Ayed, Samah ;
Abdelkefi, Abdessattar ;
Najar, Fehmi ;
Hajj, Muhammad R. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (02) :174-186
[5]   An electromechanical finite element model for piezoelectric energy harvester plates [J].
De Marqui Junior, Carlos ;
Erturk, Alper ;
Inman, Daniel J. .
JOURNAL OF SOUND AND VIBRATION, 2009, 327 (1-2) :9-25
[6]   Beam Shape Optimization for Power Harvesting [J].
Dietl, John M. ;
Garcia, Ephrahim .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (06) :633-646
[7]   Issues in mathematical modeling of piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (06)
[8]   A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2008, 130 (04)
[9]   An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2009, 18 (02)
[10]   Assumed-modes modeling of piezoelectric energy harvesters: Euler-Bernoulli, Rayleigh, and Timoshenko models with axial deformations [J].
Erturk, Alper .
COMPUTERS & STRUCTURES, 2012, 106 :214-227