Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule

被引:54
作者
She, Yanchao [1 ,2 ]
Zheng, Xuejun [1 ,2 ]
Wang, Denglong [1 ,2 ]
Zhang, Weixi
机构
[1] Xiangtan Univ, Fac Mat Optoelect & Phys, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Minist Educ, Key Lab Low Dimens Mat & Applicat Technol, Xiangtan 411105, Hunan, Peoples R China
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; GIANT KERR NONLINEARITY; DOMAIN-WALL SOLITONS; FIBER RING LASER; SLOW LIGHT; OPTICAL SOLITONS; WELL STRUCTURES; PHOTONS; SYSTEM; DEVICES;
D O I
10.1364/OE.21.017392
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the coupling effect between interdot tunneling coupling and external optical control field to study the linear optical property and the formation of temporal optical solitons in a quantum dot molecules system, analytically. The results show that the double tunneling induced transparency (TIT) windows are appeared in the absorption curve of probe field because of the formation of dynamic Stark splitting and quantum destructive interference effect from the two upper levels. Interestingly, the width of the TIT window becomes wider with the increasing intensity of the optical control field. We also find that the Kerr nonlinear effect of the probe field can be modulated effectively through coherent control both the control field and the interdot tunneling coupling in this system. Meanwhile, we demonstrate that the formation of dark or bright solitons can be practical regulated by varying the intensity of the optical control field. (C) 2013 Optical Society of America
引用
收藏
页码:17392 / 17403
页数:12
相关论文
共 38 条
[11]   Steady-state absorption-dispersion properties and four-wave mixing process in a quantum dot nanostructure [J].
Hao, Xiangying ;
Wu, Jing ;
Wang, Ying .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2012, 29 (03) :420-428
[12]  
Hasegawa A., 2003, Optical Solitons in Fibers
[13]   Exciton dynamics and logic operations in a near-field optically coupled quantum-dot system [J].
Kobayashi, K ;
Sangu, S ;
Kawazoe, T ;
Ohtsu, M .
JOURNAL OF LUMINESCENCE, 2005, 112 (1-4) :117-121
[14]   Shape, strain, and ordering of lateral InAs quantum dot molecules [J].
Krause, B ;
Metzger, TH ;
Rastelli, A ;
Songmuang, R ;
Kiravittaya, S ;
Schmidt, OG .
PHYSICAL REVIEW B, 2005, 72 (08)
[15]   An all-optical quantum gate in a semiconductor quantum dot [J].
Li, XQ ;
Wu, YW ;
Steel, D ;
Gammon, D ;
Stievater, TH ;
Katzer, DS ;
Park, D ;
Piermarocchi, C ;
Sham, LJ .
SCIENCE, 2003, 301 (5634) :809-811
[16]  
Marcinkevi?ius S., 2008, APPL PHYS LETT, V92
[17]   Electrical Control of Interdot Electron Tunneling in a Double InGaAs Quantum-Dot Nanostructure [J].
Mueller, K. ;
Bechtold, A. ;
Ruppert, C. ;
Zecherle, M. ;
Reithmaier, G. ;
Bichler, M. ;
Krenner, H. J. ;
Abstreiter, G. ;
Holleitner, A. W. ;
Villas-Boas, J. M. ;
Betz, M. ;
Finley, J. J. .
PHYSICAL REVIEW LETTERS, 2012, 108 (19)
[18]   Numerical investigation of electromagnetically induced transparency in a quantum dot structure [J].
Nielsen, P. Kaer ;
Thyrrestrup, H. ;
Mork, J. ;
Tromborg, B. .
OPTICS EXPRESS, 2007, 15 (10) :6396-6408
[19]   Tunnel coupling in an ensemble of vertically aligned quantum dots at room temperature [J].
Nikolaev, V. V. ;
Averkiev, N. S. ;
Sobolev, M. M. ;
Gadzhiyev, I. M. ;
Bakshaev, I. O. ;
Buyalo, M. S. ;
Portnoi, E. L. .
PHYSICAL REVIEW B, 2009, 80 (20)
[20]  
Ohtsu M., 2008, Principles of nanophotonics