Exploration, Inference, and Prediction in Neuroscience and Biomedicine

被引:135
作者
Bzdok, Danilo [1 ,2 ,3 ]
Ioannidis, John P. A. [4 ,5 ,6 ,7 ,8 ]
机构
[1] Rheinisch Westfalische TH RWTH Aachen Univ, Dept Psychiat Psychotherapy & Psychosomat, D-52072 Aachen, Germany
[2] JARA, Translat Brain Med, Aachen, Germany
[3] Commissariat & Energie Atom CEA Saclay, Parietal Team, Neurospin, INRIA, F-91191 Gif Sur Yvette, France
[4] Stanford Univ, Metares Innovat Ctr Stanford, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
RISK PREDICTION; MODELS; OPPORTUNITIES; PERSPECTIVES; TRANSPARENT; EXPLANATION; VALIDATION;
D O I
10.1016/j.tins.2019.02.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent decades have seen dramatic progress in brain research. These advances were often buttressed by probing single variables to make circumscribed discoveries, typically through null hypothesis significance testing. New ways for generating massive data fueled tension between the traditional methodology that is used to infer statistically relevant effects in carefully chosen variables, and pattern-learning algorithms that are used to identify predictive signatures by searching through abundant information. In this article we detail the antagonistic philosophies behind two quantitative approaches: certifying robust effects in understandable variables, and evaluating how accurately a built model can forecast future outcomes. We discourage choosing analytical tools via categories such as 'statistics' or 'machine learning'. Instead, to establish reproducible knowledge about the brain, we advocate prioritizing tools in view of the core motivation of each quantitative analysis: aiming towards mechanistic insight or optimizing predictive accuracy.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 71 条
[1]   The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research [J].
Amrhein, Valentin ;
Korner-Nievergelt, Franzi ;
Roth, Tobias .
PEERJ, 2017, 5
[2]  
[Anonymous], 2012, Learning_from_data
[3]  
[Anonymous], 2001, The elements of statistical learning: data mining, inference and prediction
[4]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165
[5]   Geographic and temporal validity of prediction models: different approaches were useful to examine model performance [J].
Austin, Peter C. ;
van Klaveren, David ;
Vergouwe, Yvonne ;
Nieboer, Daan ;
Lee, Douglas S. ;
Steyerberg, Ewout W. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 79 :76-85
[6]  
Bassett Anne S, 2008, Curr Psychiatry Rep, V10, P148
[7]   Huntington disease [J].
Bates, Gillian P. ;
Dorsey, Ray ;
Gusella, James F. ;
Hayden, Michael R. ;
Kay, Chris ;
Leavitt, Blair R. ;
Nance, Martha ;
Ross, Christopher A. ;
Scahill, Rachael I. ;
Wetzel, Ronald ;
Wild, Edward J. ;
Tabrizi, Sarah J. .
NATURE REVIEWS DISEASE PRIMERS, 2015, 1
[8]   Science and data science [J].
Blei, David M. ;
Smyth, Padhraic .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (33) :8689-8692
[9]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[10]   POINTS OF SIGNIFICANCE Statistics versus machine learning [J].
Bzdok, Danilo ;
Altman, Naomi ;
Krzywinski, Martin .
NATURE METHODS, 2018, 15 (04) :232-233