Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications

被引:0
作者
Efendiev, Yalchin [1 ]
Pankov, Alexander
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2006年 / 6卷 / 03期
关键词
elliptic; nonlinear; finite element;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain Meyers type regularity estimates for approximate solutions of nonlinear elliptic equations. These estimates axe used in the analysis of a numerical scheme obtained from a numerical homogenization of nonlinear elliptic equations. Numerical homogenization of nonlinear elliptic equations results in discretization schemes that require additional integrability of the approximate solutions. The latter motivates our work.
引用
收藏
页码:481 / 492
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 1994, TRANSL MATH MONOGR
[2]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[3]  
BRENNER S. C., 1994, TEXTS APPL MATH, V15
[4]   Numerical homogenization and correctors for nonlinear elliptic equations [J].
Efendiev, Y ;
Pankov, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 65 (01) :43-68
[5]   Numerical homogenization of nonlinear random parabolic operators [J].
Efendiev, Y ;
Pankov, A .
MULTISCALE MODELING & SIMULATION, 2004, 2 (02) :237-268
[7]  
GROGER K, 1996, MAT FIZ ANAL GEOM, V3, P46
[8]  
Helmig R., 1997, Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems
[9]  
KARSNOSELSKII MA, 1976, MONOGRAPHS TXB MECH
[10]  
KOSELEV AI, 1995, REGULARITY PROBLEM Q