Statistical implications of selectively reported inferential results

被引:28
作者
Loperfido, N [1 ]
机构
[1] Univ Urbino, I-61029 Urbino, PS, Italy
关键词
bivariate normal; skew-normal; order statistics; selection bias;
D O I
10.1016/S0167-7152(01)00052-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Researchers sometimes report only the largest estimate, the most significant test statistic and the most shifted confidence interval. The following result quantifies the statistical implications of this behavior, when the choice is restricted to two inferential procedures: the minimum and maximum of two standardized random variables whose distribution is jointly normal is skew-normal. More generally, the distribution of the minimum and maximum of two random variables whose distribution is bivariate normal centered at the origin is a mixture with equal weights of scaled skew-normal distributions. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 11 条
  • [1] Aigner D., 1977, Journal of Econometrics, V6, P21, DOI [DOI 10.1016/0304-4076(77)90052-5, 10.1016/0304-4076(77)90052-5]
  • [2] ANDEL J, 1984, KYBERNETIKA, V20, P89
  • [3] THE NONTRUNCATED MARGINAL OF A TRUNCATED BIVARIATE NORMAL-DISTRIBUTION
    ARNOLD, BC
    BEAVER, RJ
    GROENEVELD, RA
    MEEKER, WQ
    [J]. PSYCHOMETRIKA, 1993, 58 (03) : 471 - 488
  • [4] Statistical applications of the multivariate skew normal distribution
    Azzalini, A
    Capitanio, A
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 579 - 602
  • [5] The multivariate skew-normal distribution
    Azzalini, A
    DallaValle, A
    [J]. BIOMETRIKA, 1996, 83 (04) : 715 - 726
  • [6] AZZALINI A, 1985, SCAND J STAT, V12, P171
  • [7] BARTOLUCCI F, 2000, P 15 INT WORKSH STAT
  • [8] DAVID HA, 1981, ORDER STAT
  • [9] Sharp upper and lower bounds for asymptotic levels of some statistical tests
    Jiang, JM
    [J]. STATISTICS & PROBABILITY LETTERS, 1997, 35 (04) : 395 - 400
  • [10] Lehmann EL, 1999, Elements of Large-Sample Theory