Algebraic and analytic parallel transport on p-adic curves

被引:0
作者
Ludsteck, Thomas [1 ]
机构
[1] Univ Stuttgart, IAZ, D-70569 Stuttgart, Germany
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2013年 / 83卷 / 01期
关键词
p-adic geometry; Riemann-Hilbert-correspondence; Berkovich analytic space; Parallel transport; VECTOR-BUNDLES;
D O I
10.1007/s12188-013-0076-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relate two different partial p-adic analogues of the classical Riemann-Hilbert correspondence on curves. The first one comes from Deninger-Werner and Faltings and is of algebraic nature. The second one comes from Andr, and Berkovich and is defined on Berkovich analytic spaces.
引用
收藏
页码:83 / 99
页数:17
相关论文
共 23 条
[1]  
Andre Y., 2003, PERIOD MAPPINGS DIFF, P246
[2]  
Berkovich V., 2007, INTEGRATION ONE FORM, P168
[3]  
Berkovich VG, 1993, PUBL MATH, P5
[4]   FORMAL AND RIGID GEOMETRY .1. RIGID-SPACES [J].
BOSCH, S ;
LUTKEBOHMERT, W .
MATHEMATISCHE ANNALEN, 1993, 295 (02) :291-317
[5]  
Chase S.U., 1965, MEM AM MATH SOC, V58, P15
[6]  
Coleman R, 2000, ASIAN J MATH, V4, P315
[7]   Vector bundles on p-adic curves and parallel transport [J].
Deninger, C ;
Werner, A .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (04) :553-597
[8]   A p-adic simpson correspondence [J].
Faltings, G .
ADVANCES IN MATHEMATICS, 2005, 198 (02) :847-862
[9]  
Florentino C., 2012, ARXIV11023006
[10]  
Fresnel J., 2004, Progress in Mathematics, V218