On the Self-Intersection Local Time of Subfractional Brownian Motion

被引:0
|
作者
Liu, Junfeng [1 ]
Peng, Zhihang [2 ]
Tang, Donglei [1 ]
Cang, Yuquan [1 ]
机构
[1] Nanjing Audit Univ, Sch Math & Stat, Nanjing 211815, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Dept Epidemiol & Biostat, Nanjing 210029, Jiangsu, Peoples R China
关键词
EXPANSION; SYSTEMS;
D O I
10.1155/2012/414195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of self-intersection local time of d-dimensional subfractional Brownian motion based on the property of chaotic representation and the white noise analysis.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Renormalized self-intersection local time for fractional Brownian motion
    Hu, YZ
    Nualart, D
    ANNALS OF PROBABILITY, 2005, 33 (03): : 948 - 983
  • [2] Martingale approximation for self-intersection local time of Brownian motion
    de Faria, M
    Rezgui, A
    Streit, L
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, : 95 - 106
  • [3] Renormalized self-intersection local time of bifractional Brownian motion
    Chen, Zhenlong
    Sang, Liheng
    Hao, Xiaozhen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [4] Renormalized self-intersection local time of bifractional Brownian motion
    Zhenlong Chen
    Liheng Sang
    Xiaozhen Hao
    Journal of Inequalities and Applications, 2018
  • [5] Smoothness of self-intersection local time of multidimensional fractional Brownian motion
    Yu, Xianye
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (17) : 4278 - 4293
  • [6] REGULARITY OF RENORMALIZED SELF-INTERSECTION LOCAL TIME FOR FRACTIONAL BROWNIAN MOTION
    Hui, Yaozhong
    Nualart, David
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2007, 7 (01) : 21 - 30
  • [7] Derivative of Multiple Self-intersection Local Time for Fractional Brownian Motion
    Guo, Jingjun
    Zhang, Cuiyun
    Ma, Aiqin
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (01) : 623 - 641
  • [8] Correction to: Renormalized self-intersection local time of bifractional Brownian motion
    Zhenlong Chen
    Liheng Sang
    Xiaozhen Hao
    Journal of Inequalities and Applications, 2019
  • [9] Derivative for self-intersection local time of multidimensional fractional Brownian motion
    Yan, Litan
    Yu, Xianye
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2015, 87 (06) : 966 - 999
  • [10] Derivative of Multiple Self-intersection Local Time for Fractional Brownian Motion
    Jingjun Guo
    Cuiyun Zhang
    Aiqin Ma
    Journal of Theoretical Probability, 2024, 37 : 623 - 641