ON A BREZIS-NIRENBERG TYPE PROBLEM

被引:0
作者
Catrina, Florin [1 ]
机构
[1] St Johns Univ, Dept Math & Comp Sci, Queens, NY 11439 USA
关键词
Positive solution; ground state; symmetry breaking;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we discuss the existence and symmetry breaking of least energy solutions for certain weighted elliptic equations in the unit ball in R-N, with zero Dirichlet boundary conditions. We prove a multiplicity result, which answers one of the questions we left open in [6] regarding a Brezis-Nirenberg type problem.
引用
收藏
页数:10
相关论文
共 28 条
[1]   A VARIATIONAL APPROACH TO THE EQUATION DELTA-U+KU(N+2)/(N-2) = 0 IN R(N) [J].
BIANCHI, G ;
EGNELL, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (02) :159-182
[2]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[3]   Elliptic equations with critical exponent on S3:: new non-minimising solutions [J].
Brezis, H ;
Peletier, LA .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (06) :391-394
[5]   On a semilinear elliptic equation with inverse-square potential [J].
Brezis, Haim ;
Dupaigne, Louis ;
Tesei, Alberto .
SELECTA MATHEMATICA-NEW SERIES, 2005, 11 (01) :1-7
[6]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[7]  
2-I
[8]   Radial solutions for weighted semilinear equations [J].
Catrina, F ;
Lavine, R .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (03) :529-545
[9]   Positive bound states having prescribed symmetry for a class of nonlinear elliptic equations in RN [J].
Catrina, F ;
Wang, ZQ .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (02) :157-178
[10]   On the critical dimension of a semilinear degenerate elliptic equation involving critical Sobolev-Hardy exponent [J].
Chou, KS ;
Geng, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (12) :1965-1984