The first complete genome sequences of clinical isolates of human coronavirus 229E

被引:31
|
作者
Farsani, Seyed Mohammad Jazaeri [1 ,2 ]
Dijkman, Ronald [1 ]
Jebbink, Maarten F. [1 ]
Goossens, Herman [3 ]
Ieven, Margareta [3 ]
Deijs, Martin [1 ]
Molenkamp, Richard [4 ]
van der Hoek, Lia [1 ]
机构
[1] Univ Amsterdam, Acad Med Ctr, Dept Med Microbiol, Lab Expt Virol,Ctr Infect & Immun Amsterdam CINIM, NL-1105 AZ Amsterdam, Netherlands
[2] Univ Tehran Med Sci, Tehran, Iran
[3] Univ Antwerp, Univ Antwerp Hosp, Vaccine & Infect Dis Inst, Dept Med Microbiol, B-2020 Antwerp, Belgium
[4] Univ Amsterdam, Acad Med Ctr, Dept Med Microbiol, Lab Clin Virol,Ctr Infect & Immun Amsterdam CINIM, NL-1105 AZ Amsterdam, Netherlands
关键词
Human coronavirus 229E; Respiratory tract infection; Complete genome sequence; Spike gene; ORF4; gene; Nucleocapsid gene; 3' UNTRANSLATED REGION; RESPIRATORY-TRACT; RNA; VIRUS; SPIKE; REPLICATION; HCOV-229E; PROTEINS; ENCODES; FUSION;
D O I
10.1007/s11262-012-0807-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Human coronavirus 229E has been identified in the mid-1960s, yet still only one full-genome sequence is available. This full-length sequence has been determined from the cDNA-clone Inf-1 that is based on the lab-adapted strain VR-740. Lab-adaptation might have resulted in genomic changes, due to insufficient pressure to maintain gene integrity of non-essential genes. We present here the first full-length genome sequence of two clinical isolates. Each encoded gene was compared to Inf-1. In general, little sequence changes were noted, most could be attributed to genetic drift, since the clinical isolates originate from 2009 to 2010 and VR740 from 1962. Hot spots of substitutions were situated in the S1 region of the Spike, the nucleocapsid gene, and the non-structural protein 3 gene, whereas several deletions were detected in the 3'UTR. Most notable was the difference in genome organization: instead of an ORF4A and ORF4B, an intact ORF4 was present in clinical isolates.
引用
收藏
页码:433 / 439
页数:7
相关论文
共 50 条
  • [11] Identification and Characterization of a Novel Alpaca Respiratory Coronavirus Most Closely Related to the Human Coronavirus 229E
    Crossley, Beate M.
    Mock, Richard E.
    Callison, Scott A.
    Hietala, Sharon K.
    VIRUSES-BASEL, 2012, 4 (12): : 3689 - 3700
  • [12] Codon usage bias analysis of the spike protein of human coronavirus 229E and its host adaptability
    Lu, Meng
    Wan, Wenbo
    Li, Yuxing
    Li, Haipeng
    Sun, Bowen
    Yu, Kang
    Zhao, Jin
    Franzo, Giovanni
    Su, Shuo
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [13] The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production
    Zhang, Ronghua
    Wang, Kai
    Lv, Wei
    Yu, Wenjing
    Xie, Shiqi
    Xu, Ke
    Schwarz, Wolfgang
    Xiong, Sidong
    Sun, Bing
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2014, 1838 (04): : 1088 - 1095
  • [14] Wildlife in Cameroon harbor diverse coronaviruses, including many closely related to human coronavirus 229E
    Ntumvi, Nkom F.
    Ndze, Valantine Ngum
    Gillis, Amethyst
    Diffo, Joseph Le Doux
    Tamoufe, Ubald
    Takuo, Jean-Michel
    Mouiche, Moctar M. M.
    Nwobegahay, Julius
    LeBreton, Matthew
    Rimoin, Anne W.
    Schneider, Bradley S.
    Monagin, Corina
    McIver, David J.
    Roy, Sanjit
    Ayukekbong, James A.
    Saylors, Karen E.
    Joly, Damien O.
    Wolfe, Nathan D.
    Rubin, Edward M.
    Lange, Christian E.
    VIRUS EVOLUTION, 2022, 8 (01)
  • [15] Nonthermal plasma-generated ozone inhibits human coronavirus 229E infectivity on glass surface
    Bhartiya, Pradeep
    Lim, Jun S.
    Kaushik, Neha
    Shaik, Abdul M.
    Shin, Young O.
    Kaushik, Nagendra K.
    Choi, Eun H.
    PLASMA PROCESSES AND POLYMERS, 2022, 19 (11)
  • [16] Comprehensive Detection and Identification of Seven Animal Coronaviruses and Human Respiratory Coronavirus 229E with a Microarray Hybridization Assay
    Chen, Qin
    Li, Jian
    Deng, Zhirui
    Xiong, Wei
    Wang, Quan
    Hu, Yong-qiang
    INTERVIROLOGY, 2010, 53 (02) : 95 - 104
  • [17] Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86Å resolution
    Yan, Lei
    Meng, Bing
    Xiang, Jiangchao
    Wilson, Ian A.
    Yang, Bei
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 : 841 - 851
  • [18] Ginkgolic Acid Inhibits Coronavirus Strain 229E Infection of Human Epithelial Lung Cells
    Bhutta, Maimoona S.
    Sausen, Daniel G.
    Gallo, Elisa S.
    Dahari, Harel
    Doncel, Gustavo F.
    Borenstein, Ronen
    PHARMACEUTICALS, 2021, 14 (10)
  • [19] Possible Involvement of Infection With Human Coronavirus 229E, but not NL63, in Kawasaki Disease
    Shirato, Kazuya
    Imada, Yoshio
    Kawase, Miyuki
    Nakagaki, Keiko
    Matsuyama, Shutoku
    Taguchi, Fumihiro
    JOURNAL OF MEDICAL VIROLOGY, 2014, 86 (12) : 2146 - 2153
  • [20] Fatal human coronavirus 229E (HCoV-229E) and RSV-Related pneumonia in an AIDS patient from Colombia
    Villamil-Gomez, Wilmer E.
    Sanchez, Alvaro
    Gelis, Libardo
    Silvera, Luz Alba
    Barbosa, Juliana
    Otero-Nader, Octavio
    Bonilla-Salgado, Carlos David
    Rodriguez-Morales, Alfonso J.
    TRAVEL MEDICINE AND INFECTIOUS DISEASE, 2020, 36