Stability of discrete solitons in nonlinear Schrodinger lattices

被引:133
作者
Pelinovsky, DE
Kevrekidis, PG [1 ]
Frantzeskakis, DJ
机构
[1] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
[3] Univ Athens, Dept Phys, Athens 15784, Greece
基金
加拿大自然科学与工程研究理事会;
关键词
discrete nonlinear Schrodinger equation; discrete solitons; existence and stability; Lyapunov-Schmidt reductions;
D O I
10.1016/j.physd.2005.07.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discrete solitons bifurcating from the anti-continuum limit of the discrete nonlinear Schrodinger (NLS) lattice. The discrete soliton in the anti-continuum limit represents an arbitrary finite superposition of in-phase or anti-Phase excited nodes, separated by an arbitrary sequence of empty nodes. By using stability analysis, we prove that the discrete solitons are all unstable near the anti-continuum limit, except for the solitons, which consist of alternating anti-phase excited nodes. We classify analytically and confirm numerically the number of unstable eigenvalues associated with each family of the discrete solitons. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 41 条
[1]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[2]   On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation [J].
Alfimov, GL ;
Brazhnyi, VA ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) :127-150
[3]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[4]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[5]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[6]   A method for locating symmetric homoclinic orbits using symbolic dynamics [J].
Bergamin, JM ;
Bountis, T ;
Jung, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (45) :8059-8070
[7]   Homoclinic orbits of invertible maps [J].
Bergamin, JM ;
Bountis, T ;
Vrahatis, MN .
NONLINEARITY, 2002, 15 (05) :1603-1619
[8]   Superfluid current disruption in a chain of weakly coupled Bose-Einstein condensates [J].
Cataliotti, FS ;
Fallani, L ;
Ferlaino, F ;
Fort, C ;
Maddaloni, P ;
Inguscio, M .
NEW JOURNAL OF PHYSICS, 2003, 5 :71.1-71.7
[9]   Josephson junction arrays with Bose-Einstein condensates [J].
Cataliotti, FS ;
Burger, S ;
Fort, C ;
Maddaloni, P ;
Minardi, F ;
Trombettoni, A ;
Smerzi, A ;
Inguscio, M .
SCIENCE, 2001, 293 (5531) :843-846
[10]   ENTROPY-DRIVEN DNA DENATURATION [J].
DAUXOIS, T ;
PEYRARD, M ;
BISHOP, AR .
PHYSICAL REVIEW E, 1993, 47 (01) :R44-R47