Propagation of Gaussian-apodized paraxial beams through first-order optical systems via complex coordinate transforms and ray transfer matrices
被引:4
作者:
Graf, T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USAUniv Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USA
Graf, T.
[1
]
Christodoulides, D. N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32816 USAUniv Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USA
Christodoulides, D. N.
[3
]
Mills, M. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32816 USAUniv Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USA
Mills, M. S.
[3
]
Moloney, J. V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USA
Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USAUniv Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USA
Moloney, J. V.
[1
,2
]
Venkataramani, S. C.
论文数: 0引用数: 0
h-index: 0
机构:Univ Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USA
Venkataramani, S. C.
Wright, E. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USAUniv Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USA
Wright, E. M.
[2
]
机构:
[1] Univ Arizona, Dept Math, Arizona Ctr Math Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
We investigate the linear propagation of Gaussian-apodized solutions to the paraxial wave equation in free-space and first-order optical systems. In particular, we present complex coordinate transformations that yield a very general and efficient method to apply a Gaussian apodization (possibly with initial phase curvature) to a solution of the paraxial wave equation. Moreover, we show how this method can be extended from free space to describe propagation behavior through nonimaging first-order optical systems by combining our coordinate transform approach with ray transfer matrix methods. Our framework includes several classes of interesting beams that are important in applications as special cases. Among these are, for example, the Bessel-Gauss and the Airy-Gauss beams, which are of strong interest to researchers and practitioners in various fields. (C) 2012 Optical Society of America