Efficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas

被引:71
作者
Akselrod, Gleb M. [1 ,2 ]
Weidman, Mark C. [4 ]
Li, Ying [5 ]
Argyropoulos, Christos [5 ]
Tisdale, William A. [4 ]
Mikkelsen, Maiken H. [1 ,2 ,3 ]
机构
[1] Duke Univ, Ctr Metamat & Integrated Plasmon, Durham, NC 27708 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[5] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
关键词
plasmonics; IR light sources; Purcell enhancement; quantum dots; nanoantenna; nanocube; ROOM-TEMPERATURE; EMISSION; NANOCRYSTALS; ENHANCEMENT;
D O I
10.1021/acsphotonics.6b00357
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Infrared (IR) light sources with high modulation rates are critical components for on-chip optical communications. Lead-based colloidal quantum dots are promising nonepitaxial materials for use in IR light-emitting diodes, but their slow photoluminescence lifetime is a serious limitation. Here we demonstrate coupling of PbS quantum dots to colloidal plasmonic nanoantennas based on film-coupled metal nanocubes, resulting in a dramatic 1300-fold reduction in the emission lifetime from the microsecond to the nanosecond regime. This lifetime reduction is primarily due to a 1100-fold increase in the radiative decay rate owing to the high quantum yield (65%) of the antenna. The short emission lifetime is accompanied by high antenna quantum efficiency and directionality. This nonepitaxial platform points toward GHz frequency, electrically modulated, telecommunication wavelength light-emitting diodes and single-photon sources.
引用
收藏
页码:1741 / 1746
页数:6
相关论文
共 21 条
[1]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[2]   Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles [J].
Ciraci, Cristian ;
Rose, Alec ;
Argyropoulos, Christos ;
Smith, David R. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (11) :2601-2607
[3]   Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface [J].
Dong, Angang ;
Chen, Jun ;
Vora, Patrick M. ;
Kikkawa, James M. ;
Murray, Christopher B. .
NATURE, 2010, 466 (7305) :474-477
[4]   Coupling of PbS quantum dots to photonic crystal cavities at room temperature [J].
Fushman, I ;
Englund, D ;
Vuckovic, J .
APPLIED PHYSICS LETTERS, 2005, 87 (24) :1-3
[5]  
Gong XW, 2016, NAT PHOTONICS, V10, P253, DOI [10.1038/NPHOTON.2016.11, 10.1038/nphoton.2016.11]
[6]   Colloidal Synthesis of Nanopatch Antennas for Applications in Plasmonics and Nanophotonics [J].
Hoang, Thang B. ;
Huang, Jiani ;
Mikkelsen, Maiken H. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (111)
[7]   Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities [J].
Hoang, Thang B. ;
Akselrod, Gleb M. ;
Mikkelsen, Maiken H. .
NANO LETTERS, 2016, 16 (01) :270-275
[8]   Ultrafast spontaneous emission source using plasmonic nanoantennas [J].
Hoang, Thang B. ;
Akselrod, Gleb M. ;
Argyropoulos, Christos ;
Huang, Jiani ;
Smith, David R. ;
Mikkelsen, Maiken H. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths [J].
Humer, Markus ;
Guider, Romain ;
Jantsch, Wolfgang ;
Fromherz, Thomas .
OPTICS EXPRESS, 2013, 21 (16) :18680-18688
[10]   Size-Dependent Optical Properties of Colloidal PbS Quantum Dots [J].
Moreels, Iwan ;
Lambert, Karel ;
Smeets, Dries ;
De Muynck, David ;
Nollet, Tom ;
Martins, Jose C. ;
Vanhaecke, Frank ;
Vantomme, Andre ;
Delerue, Christophe ;
Allan, Guy ;
Hens, Zeger .
ACS NANO, 2009, 3 (10) :3023-3030