Ultrathin Mesoporous Co3O4 Nanosheet Arrays for High-Performance Lithium-Ion Batteries

被引:73
作者
Li, Jianbo [1 ]
Li, Zhenhua [1 ]
Ning, Fanyu [1 ]
Zhou, Lei [1 ]
Zhang, Ruikang [1 ]
Shao, Mingfei [1 ]
Wei, Min [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOWIRE ARRAYS; RATE CAPABILITY; ANODE MATERIAL; HIGH-CAPACITY; NANOPARTICLES; GRAPHENE; STORAGE; GROWTH;
D O I
10.1021/acsomega.7b01832
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal oxides, such as Co3O4, have attracted great attention for lithium-ion batteries (LIBs) due to their high theoretical capacity and satisfactory chemical stability. However, the slow kinetics of Li-ion and electron transport as well as poor cycling stability still largely restrains their applications. Here, we report the rational design of well-defined mesoporous ultrathin Co3O4 nanosheet arrays (NSAs) by topological transformation of layered double hydroxides nanosheet arrays (NSAs), which demonstrate significantly enhanced performance as anode for LIBs. The as-obtained Co3O4 NSAs with suitable thickness and abundant mesopores show excellent electrochemistry performance for LIBs, giving a high specific charge capacity of 2019.6 mAh g(-1) at 0.1 A g(-1), a good rate capability, and a remarkable cycling stability (1576.9 mAh g(-1) after the 80th cycle), which is much superior to that of Co3O4 with thicker or thinner nanosheets as well as to that of the reported results. This facile strategy may be extended to the synthesis of other transition metal oxide NSAs, which can be potentially used in energy storage and conversion devices.
引用
收藏
页码:1675 / 1683
页数:9
相关论文
共 40 条
[1]   Synthesis, characterization, and li-electrochemical performance of highly porous Co3O4 powders [J].
Binotto, G. ;
Larcher, D. ;
Prakash, A. S. ;
Urbina, R. Herrera ;
Hegde, M. S. ;
Tarascon, J-M. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3032-3040
[2]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[4]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[5]   Ultra-High Capacity Lithium-Ion Batteries with Hierarchical CoO Nanowire Clusters as Binder Free Electrodes [J].
Cao, Kangzhe ;
Jiao, Lifang ;
Liu, Yongchang ;
Liu, Huiqiao ;
Wang, Yijing ;
Yuan, Huatang .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (07) :1082-1089
[6]   SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
SMALL, 2013, 9 (11) :1877-1893
[7]   Surface-Amorphous and Oxygen-Deficient Li3VO4-δ as a Promising Anode Material for Lithium-Ion Batteries [J].
Chen, Liang ;
Jiang, Xiaolei ;
Wang, Nana ;
Yue, Jie ;
Qian, Yitai ;
Yang, Jian .
ADVANCED SCIENCE, 2015, 2 (09)
[8]   Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage [J].
Chen, Yu Ming ;
Yu, Le ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (20) :5990-5993
[9]   Atomic Layer-by-Layer Co3O4/Graphene Composite for High Performance Lithium-Ion Batteries [J].
Dou, Yuhai ;
Xu, Jiantie ;
Ruan, Boyang ;
Liu, Qiannan ;
Pan, Yuede ;
Sun, Ziqi ;
Dou, Shi Xue .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[10]   Micro-/Nanostructured Co3O4 Anode with Enhanced Rate Capability for Lithium-Ion Batteries [J].
Huang, Guoyong ;
Xu, Shengming ;
Lu, Shasha ;
Li, Linyan ;
Sun, Hongyu .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7236-7243