Strict isometries of arbitrary orders

被引:18
作者
Botelho, Fernanda [1 ]
Jamison, James [1 ]
Zheng, Bentuo [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
Hilbert-Schmidt class; Elementary operators; Adjoint operator; n-Isometries; Annhilating polynomial; Linear independence; HILBERT-SPACE; TRANSFORMATIONS;
D O I
10.1016/j.laa.2011.11.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the elementary operator L, acting on the Hilbert-Schmidt class C-2(H), given by L(T) = ATB. with A and B bounded operators on a separable Hilbert space H. In this paper we establish results relating isometric properties of L with those of the defining symbols A and B. We also show that if A is a strict n-isometry on a Hilbert space H then {I, A*A, (A*)(2)A(2)..., (A*)(n-1)A(n-1)} is a linearly independent set of operators. This result allows to extend further the isometric interdependence of C and its symbols. In particular we show that if L is a p-isometry then A is a strict p - 1- (or p - 2-)isometry if and only if B* is a strict 2- (or 3-)isometry. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3303 / 3314
页数:12
相关论文
共 10 条
[1]   M-ISOMETRIC TRANSFORMATIONS OF HILBERT-SPACE .1. [J].
AGLER, J ;
STANKUS, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 21 (04) :383-429
[2]   m-Isometric transformations of Hilbert space .3. [J].
Agler, J ;
Stankus, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 24 (04) :379-421
[3]   M-ISOMETRIC TRANSFORMATIONS OF HILBERT-SPACE .2. [J].
AGLER, J ;
STANKUS, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 23 (01) :1-48
[4]  
Botelho F., 2010, LINEAR ALGEBRA APPL, V432, P77
[5]   Elementary operators and the Aluthge transform [J].
Botelho, Fernanda ;
Jamison, James .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) :275-282
[6]   OPERATOR IDENTITY SIGMA-AKXBK = O [J].
FONG, CK ;
SOUROUR, AR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (04) :845-857
[7]  
Patton LJ, 2005, HOUSTON J MATH, V31, P255
[9]  
RINGROSE JR, 1971, COMPACT NONSELFADJOI
[10]  
SHIELDS A., 1974, MATH SURVEYS, V13, P51