Simultaneous uniqueness for an inverse problem in a time-fractional diffusion equation

被引:14
作者
Jing, Xiaohua [1 ]
Peng, Jigen [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Determination of fractional-order; Inverse potential problem; Robin inverse problem; Time fractional diffusion equation;
D O I
10.1016/j.aml.2020.106558
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates the uniqueness of identifying the fractional-order, potential, and Robin coefficient simultaneously in one-dimensional time-fractional diffusion equation with non-homogeneous boundary condition. By using one boundary measurement, we prove that the fractional-order, potential on the entire interval, and Robin coefficient are determined simultaneously from asymptotic properties of the Mittag-Leffler function and the Marchenko's uniqueness theorem. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 11 条
[1]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[2]  
Freiling G., 2001, Inverse Sturm-Liouville problems and their applications
[3]   FRACTIONAL DIFFUSION EQUATION AND RELAXATION IN COMPLEX VISCOELASTIC MATERIALS [J].
GIONA, M ;
CERBELLI, S ;
ROMAN, HE .
PHYSICA A, 1992, 191 (1-4) :449-453
[4]  
Kirsch A, 2011, APPL MATH SCI, V120, P1, DOI 10.1007/978-1-4419-8474-6
[5]   Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation [J].
Li, Gongsheng ;
Zhang, Dali ;
Jia, Xianzheng ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2013, 29 (06)
[6]   Uniqueness in inverse boundary value problems for fractional diffusion equations [J].
Li, Zhiyuan ;
Imanuvilov, Oleg Yu ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2016, 32 (01)
[7]   Coefficient inverse problem for a fractional diffusion equation [J].
Miller, Luc ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2013, 29 (07)
[8]  
Podlubny I., 2013, MATH SCI ENG, V2013, P553
[9]   Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems [J].
Sakamoto, Kenichi ;
Yamamoto, Masahiro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) :426-447
[10]   Identification of the zeroth-order coefficient in a time fractional diffusion equation [J].
Sun, Liangliang ;
Wei, Ting .
APPLIED NUMERICAL MATHEMATICS, 2017, 111 :160-180