Probabilistic uncertainty analysis of epidemiological modeling to guide public health intervention policy

被引:24
作者
Gilbert, Jennifer A. [1 ]
Meyers, Lauren Ancel [2 ,3 ]
Galvani, Alison P. [1 ,4 ]
Townsend, Jeffrey P. [4 ,5 ]
机构
[1] Yale Univ, Sch Publ Hlth, Dept Epidemiol Microbial Dis, New Haven, CT USA
[2] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT USA
[5] Yale Univ, Dept Biostat, New Haven, CT 06520 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Infectious disease; Epidemiology; Mathematical modeling; Health policy; Uncertainty; PANDEMIC INFLUENZA; SENSITIVITY-ANALYSIS; TRANSMISSION; VACCINE; PARAMETERS; IMPACT; SPREAD; RISK; HOUSEHOLD;
D O I
10.1016/j.epidem.2013.11.002
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Mathematical modeling of disease transmission has provided quantitative predictions for health policy, facilitating the evaluation of epidemiological outcomes and the cost-effectiveness of interventions. However, typical sensitivity analyses of deterministic dynamic infectious disease models focus on model architecture and the relative importance of parameters but neglect parameter uncertainty when reporting model predictions. Consequently, model results that identify point estimates of intervention levels necessary to terminate transmission yield limited insight into the probability of success. We apply probabilistic uncertainty analysis to a dynamic model of influenza transmission and assess global uncertainty in outcome. We illustrate that when parameter uncertainty is not incorporated into outcome estimates, levels of vaccination and treatment predicted to prevent an influenza epidemic will only have an approximately 50% chance of terminating transmission and that sensitivity analysis alone is not sufficient to obtain this information. We demonstrate that accounting for parameter uncertainty yields probabilities of epidemiological outcomes based on the degree to which data support the range of model predictions. Unlike typical sensitivity analyses of dynamic models that only address variation in parameters, the probabilistic uncertainty analysis described here enables modelers to convey the robustness of their predictions to policy makers, extending the power of epidemiological modeling to improve public health. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
[1]   Vaccination against rubella: Analysis of the temporal evolution of the age-dependent force of infection and the effects of different contact patterns [J].
Amaku, M ;
Coutinho, FAB ;
Azevedo, RS ;
Burattini, MN ;
Lopez, LF ;
Massad, E .
PHYSICAL REVIEW E, 2003, 67 (05) :11
[2]   Relationship among epidemiological parameters of six childhood infections in a non-immunized Brazilian community [J].
Amaku, Marcos ;
Azevedo, Raymundo Soares ;
de Castro, Ruy Morgado ;
Massad, Eduardo ;
Bezerra Coutinho, Francisco Antonio .
MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2009, 104 (06) :897-900
[3]   Breaking the Waves: Modelling the Potential Impact of Public Health Measures to Defer the Epidemic Peak of Novel Influenza A/H1N1 [J].
an der Heiden, Matthias ;
Buchholz, Udo ;
Krause, Gerard ;
Kirchner, Goeran ;
Claus, Hermann ;
Haas, Walter H. .
PLOS ONE, 2009, 4 (12)
[4]  
ANDERSON R M, 1991
[5]  
[Anonymous], 2008, GLOBAL SENSITIVITY A
[6]  
[Anonymous], 2008, MODELING INFECT DIS, DOI DOI 10.1515/9781400841035
[7]   The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children [J].
Belshe, RB ;
Mendelman, PM ;
Treanor, J ;
King, J ;
Gruber, WC ;
Piedra, P ;
Bernstein, DI ;
Hayden, FG ;
Kotloff, K ;
Zangwill, K ;
Iacuzio, D ;
Wolff, M .
NEW ENGLAND JOURNAL OF MEDICINE, 1998, 338 (20) :1405-1412
[8]   SENSITIVITY AND UNCERTAINTY ANALYSIS OF COMPLEX-MODELS OF DISEASE TRANSMISSION - AN HIV MODEL, AS AN EXAMPLE [J].
BLOWER, SM ;
DOWLATABADI, H .
INTERNATIONAL STATISTICAL REVIEW, 1994, 62 (02) :229-243
[9]   Model Parameter Estimation and Uncertainty Analysis: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group-6 [J].
Briggs, Andrew H. ;
Weinstein, Milton C. ;
Fenwick, Elisabeth A. L. ;
Karnon, Jonathan ;
Sculpher, Mark J. ;
Paltiel, A. David .
MEDICAL DECISION MAKING, 2012, 32 (05) :722-732
[10]   A Bayesian MCMC approach to study transmission of influenza:: application to household longitudinal data [J].
Cauchemez, S ;
Carrat, F ;
Viboud, C ;
Valleron, AJ ;
Boëlle, PY .
STATISTICS IN MEDICINE, 2004, 23 (22) :3469-3487