Dual Detection-Guided Newborn Target Intensity Based on Probability Hypothesis Density for Multiple Target Tracking

被引:2
|
作者
Gao, Li [1 ]
Ma, Yongjie [1 ]
机构
[1] Shangqiu Polytech, Dept Mech & Elect Engn, Shangqiu 476000, Peoples R China
来源
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS | 2016年 / 10卷 / 10期
关键词
Multi-target tracking; probability hypothesis density; newborn target intensity; Gaussian mixture; RANDOM FINITE SETS; PHD; FILTER;
D O I
10.3837/tiis.2016.10.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Probability Hypothesis Density (PHD) filter is a suboptimal approximation and tractable alternative to the multi-target Bayesian filter based on random finite sets. However, the PHD filter fails to track newborn targets when the target birth intensity is unknown prior to tracking. In this paper, a dual detection-guided newborn target intensity PHD algorithm is developed to solve the problem, where two schemes, namely, a newborn target intensity estimation scheme and improved measurement-driven scheme, are proposed. First, the newborn target intensity estimation scheme, consisting of the Dirichlet distribution with the negative exponent parameter and target velocity feature, is used to recursively estimate the target birth intensity. Then, an improved measurement-driven scheme is introduced to reduce the errors of the estimated number of targets and computational load. Simulation results demonstrate that the proposed algorithm can achieve good performance in terms of target states, target number and computational load when the newborn target intensity is not predefined in multi-target tracking systems.
引用
收藏
页码:5095 / 5111
页数:17
相关论文
共 50 条
  • [1] Adaptive Gaussian mixture probability hypothesis density for tracking multiple targets
    Zhang, Huanqing
    Ge, Hongwei
    Yang, Jinlong
    OPTIK, 2016, 127 (08): : 3918 - 3924
  • [2] Probability Hypothesis Density Filter Based on Strong Tracking MIE for Multiple Maneuvering Target Tracking
    Yang, Jin-Long
    Ji, Hong-Bing
    Fan, Zhen-Hua
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2013, 11 (02) : 306 - 316
  • [3] Probability hypothesis density filter with imperfect detection probability for multi-target tracking
    Gao, Li
    Liu, Huaiwang
    Liu, Hongyun
    OPTIK, 2016, 127 (22): : 10428 - 10436
  • [4] A Sector-Matching Probability Hypothesis Density Filter for Radar Multiple Target Tracking
    Yang, Jialin
    Jiang, Defu
    Tao, Jin
    Gao, Yiyue
    Lu, Xingchen
    Han, Yan
    Liu, Ming
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [5] Detection-guided multi-target Bayesian filter
    Wang, Yang
    Jing, Zhongliang
    Hu, Shiqiang
    Wu, Jingjing
    SIGNAL PROCESSING, 2012, 92 (02) : 564 - 574
  • [6] The Probability Hypothesis Density Filter Based Multi-target Visual Tracking
    Wu JingJing
    Hu ShiQiang
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2905 - 2909
  • [7] Penalized Gaussian mixture probability hypothesis density filter for multiple target tracking
    Yazdian-Dehkordi, Mahdi
    Azimifar, Zohreh
    Masnadi-Shirazi, Mohammad Ali
    SIGNAL PROCESSING, 2012, 92 (05) : 1230 - 1242
  • [8] The Modified Probability Hypothesis Density Filter With Adaptive Birth Intensity Estimation for Multi-Target Tracking in Low Detection Probability
    Zhu, Qian
    Li, Tao
    Pan, Jiameng
    Bao, Qinglong
    IEEE ACCESS, 2020, 8 : 43690 - 43710
  • [9] An improved probability hypothesis density filter for multi-target tracking
    Zhang, Huanqing
    Gao, Li
    Xu, Mingliang
    Wang, Ying
    OPTIK, 2019, 182 : 23 - 31
  • [10] Urban Terrain Multiple Target Tracking Using Probability Hypothesis Density Particle Filtering
    Zhou, Meng
    Chakraborty, Bhavana
    Zhang, Jun Jason
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 331 - 335