The Θ-KMS adjoint and time reversed quantum Markov semigroups

被引:7
作者
Bolanos-Servin, Jorge R. [1 ]
Quezada, Roberto [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Iztapalapa 09340, DF, Mexico
关键词
Theta-KMS adjoint; states associated with CP maps; von Neumann relative entropy; quantum entropy production; DETAILED BALANCE; ENTROPY PRODUCTION; DIRICHLET FORMS; GENERATORS;
D O I
10.1142/S0219025715500162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of Theta-KMS adjoint of a quantum Markov semigroup, which is identified with the time reversed semigroup. The break of Theta-KMS symmetry, or Theta-standard quantum detailed balance in the sense of Fagnola-Umanita, (11) is measured by means of the von Neumann relative entropy of states associated with the semigroup and its Theta-KMS adjoint.
引用
收藏
页数:16
相关论文
共 19 条
[1]   Time reflected Markov processes [J].
Accardi, L ;
Mohari, A .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1999, 2 (03) :397-425
[2]   OPEN QUANTUM MARKOVIAN SYSTEMS AND MICROREVERSIBILITY [J].
AGARWAL, GS .
ZEITSCHRIFT FUR PHYSIK, 1973, 258 (05) :409-422
[3]   A Wasserstein-type Distance to Measure Deviation from Equilibrium of Quantum Markov Semigroups [J].
Agredo, Julian .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2013, 20 (02)
[4]  
Alicki R., 1976, Reports on Mathematical Physics, V10, P249, DOI 10.1016/0034-4877(76)90046-X
[5]  
[Anonymous], 2011, PERSPECT NONEQUILIBR
[6]  
Bolanos-Servin J. R., 2014, THESIS UAM IZTAPALAP
[7]   A CYCLE DECOMPOSITION AND ENTROPY PRODUCTION FOR CIRCULANT QUANTUM MARKOV SEMIGROUPS [J].
Bolanos-Servin, Jorge R. ;
Quezada, Roberto .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 16 (02)
[8]   Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras [J].
Cipriani, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (02) :259-300
[9]  
Cipriani F, 2008, LECT NOTES MATH, V1954, P161
[10]   FROM CLASSICAL TO QUANTUM ENTROPY PRODUCTION [J].
Fagnola, F. ;
Rebolledo, R. .
QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2010, 25 :245-+