Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation

被引:80
作者
Liu, Xiangbing [1 ]
Wang, Rongshan [1 ]
Ren, Ai [1 ]
Jiang, Jing [2 ]
Xu, Chaoliang [1 ]
Huang, Ping [1 ]
Qian, Wangjie [1 ]
Wu, Yichu [2 ]
Zhang, Chonghong [3 ]
机构
[1] Suzhou Nucl Power Res Inst, Life Management Technol Ctr, Suzhou 215004, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Nucl Solid State Phys, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
MICROSTRUCTURAL EVOLUTION; INSTRUMENTED INDENTATION; HARDNESS; HELIUM; STEELS; MODEL; F82H;
D O I
10.1016/j.jnucmat.2013.09.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanoindentation in combination with ion irradiation offers the possibility to quantify irradiation hardening due to radiation damage. Irradiation experiments for Fe-1.0wt.%Cu alloys, China A508-3 steels, and 16MND5 steels were carried out at about 100 degrees C by proton and Fe-ions with the energy of 240 key, 3 MeV respectively. The constant stiffness measurement (CSM) with a diamond Berkovich indenter was used to obtain the depth profile of hardness. The results showed that under 240 key proton irradiation (peak damage up to 0.5 dpa), Fe-1.0wt.%Cu alloys exhibited the largest hardening (similar to 55%), 16MND5 steels resided in medium hardening (similar to 46%), and China A508-3(2) steels had the least hardening (similar to 10%). Under 3 MeV Fe ions irradiation (peak damage up to 1.37 dpa), both China A508-3(1) and 16MND5 steels showed the same hardening (similar to 26%). The sequence of irradiation tolerance for these materials is China A508-3(2) > 16MND5 approximate to China A508-3(1) > Fe-1.0wt.%Cu. Based on the determination of the transition depth, the nominal hardness H-0(irr) was also calculated by Kasada method. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 29 条
[11]   Effects of proton irradiation on Chinese domestic RPV steels by variable energy positron annihilation spectroscopy [J].
Jiang, J. ;
Wu, Y. C. ;
Wang, S. J. ;
Liu, X. B. ;
Wang, R. S. .
16TH INTERNATIONAL CONFERENCE ON POSITRON ANNIHILATION (ICPA-16), 2013, 443
[12]   Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests [J].
Kang, Seung-Kyun ;
Kim, Ju-Young ;
Park, Chan-Pyoung ;
Kim, Hyun-Uk ;
Kwon, Dongil .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (02) :337-343
[13]   A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques [J].
Kasada, Ryuta ;
Takayama, Yoshiyuki ;
Yabuuchi, Kiyohiro ;
Kimura, Akihiko .
FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) :2658-2661
[14]   Radiation and helium effects on microstructures, nano-indentation properties and deformation behavior in ferrous alloys [J].
Katoh, Y ;
Ando, M ;
Kohyama, A .
JOURNAL OF NUCLEAR MATERIALS, 2003, 323 (2-3) :251-262
[15]  
Kitao T., 2002, P 21 INT S EFF RAD M, V1447, P365
[16]   Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy [J].
Koegler, R. ;
Anwand, W. ;
Richter, A. ;
Butterling, M. ;
Ou, Xin ;
Wagner, A. ;
Chen, C. -L. .
JOURNAL OF NUCLEAR MATERIALS, 2012, 427 (1-3) :133-139
[17]   Positron annihilation study of proton-irradiated reactor pressure vessel steels [J].
Liu, Xiangbing ;
Wang, Rongshan ;
Ren, Ai ;
Huang, Ping ;
Wu, Yichu ;
Jiang, Jing ;
Zhang, Chonghong ;
Wang, Xitao .
RADIATION PHYSICS AND CHEMISTRY, 2012, 81 (10) :1586-1592
[18]   Embrittlement of RPV steels: An atom probe tomography perspective [J].
Miller, M. K. ;
Russell, K. F. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 371 (1-3) :145-160
[19]   Indentation size effects in crystalline materials: A law for strain gradient plasticity [J].
Nix, WD ;
Gao, HJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (03) :411-425
[20]   Recent developments in irradiation-resistant steels [J].
Odette, G. R. ;
Alinger, M. J. ;
Wirth, B. D. .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2008, 38 (471-503) :471-503