Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure

被引:18
|
作者
Zhang, Jingchao [1 ,2 ]
Wang, Xinyu [3 ]
Hong, Yang [4 ]
Xiong, Qingang [5 ]
Jiang, Jin [1 ,6 ]
Yue, Yanan [1 ,6 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China
[2] Univ Nebraska, Holland Comp Ctr, Lincoln, NE 68588 USA
[3] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[4] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[6] Minist Educ, State Lab Hydraul Machinery Transients, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
hexagonal boron nitride; interfacial thermal resistance; thermal rectification; molecular dynamics; phonon thermal transport; MOLECULAR-DYNAMICS SIMULATION; BILAYER HETEROSTRUCTURE; PHONON TRANSPORT; CONDUCTIVITY; GRAPHENE; CONDUCTANCE; RECTIFICATION; TEMPERATURE; PHOSPHORENE; RESISTANCE;
D O I
10.1088/1361-6528/28/3/035404
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, thermal transport at the junction of an asymmetric layer hexagonal boron-nitride (h-BN) heterostructure is explored using a non-equilibrium molecular dynamics method. A thermal contact resistance of 3.6 x 10(-11) K . m(2)W(-1) is characterized at a temperature of 300 K with heat flux from the trilayer to monolayer regions. The mismatch in the flexural phonon modes revealed by power spectra analysis provides the driving force for the calculated thermal resistance. A high thermal rectification efficiency of 360% is calculated at the layer junction surpassing that of graphene. Several modulators, i.e. the system temperature, contact pressure and lateral dimensions, are applied to manipulate the thermal conductance and rectification across the interfaces. The predicted thermal rectification sustains positive correlations with temperature and phonon propagation lengths with little change to the coupling strength.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Mechanical and thermal properties of grain boundary in a planar heterostructure of graphene and hexagonal boron nitride
    Li, Yinfeng
    Wei, Anran
    Ye, Han
    Yao, Haimin
    NANOSCALE, 2018, 10 (07) : 3497 - 3508
  • [22] Thermal Expansion of Hexagonal Boron Nitride
    Perottoni, Claudio A.
    Zorzi, Janete E.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2025, 262 (02):
  • [23] Heat transport in pristine and polycrystalline single-layer hexagonal boron nitride
    Dong, Haikuan
    Hirvonen, Petri
    Fan, Zheyong
    Ala-Nissila, Tapio
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (38) : 24602 - 24612
  • [24] Random number generator via hexagonal boron nitride heterostructure
    Sani, R. Hoseini
    Behnia, S.
    PHYSICA SCRIPTA, 2022, 97 (03)
  • [25] Periodic buckling patterns of graphene/hexagonal boron nitride heterostructure
    Zhang, Chenxi
    Song, Jizhou
    Yang, Qingda
    NANOTECHNOLOGY, 2014, 25 (44)
  • [26] Tuning the Thermal Transport of Hexagonal Boron Nitride/Reduced Graphene Oxide Heterostructures
    Chen, Shao-Nan
    Liu, Xu-Shan
    Luo, Rong-Hui
    Xu, En-Ze
    Tian, Jian-Guo
    Liu, Zhi-Bo
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (19) : 22626 - 22633
  • [27] A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure
    Zhang, Chenxi
    Lou, Jun
    Song, Jizhou
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (14)
  • [28] Effect of Defects on the Thermal Transport across the Graphene/Hexagonal Boron Nitride Interface
    Li, Maoyuan
    Zheng, Bing
    Duan, Ke
    Zhang, Yun
    Huang, Zhigao
    Zhou, Huamin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (26): : 14945 - 14953
  • [29] Understanding the Thermal Impedance of Silicone Rubber/Hexagonal Boron Nitride Composites as Thermal Interface Materials
    Ji, Yuan
    Han, Shi-Da
    Wu, Hong
    Guo, Shao-Yun
    Zhang, Feng-Shun
    Qiu, Jian-Hui
    CHINESE JOURNAL OF POLYMER SCIENCE, 2024, 42 (03) : 352 - 363
  • [30] Understanding the Thermal Impedance of Silicone Rubber/Hexagonal Boron Nitride Composites as Thermal Interface Materials
    Yuan Ji
    Shi-Da Han
    Hong Wu
    Shao-Yun Guo
    Feng-Shun Zhang
    Jian-Hui Qiu
    Chinese Journal of Polymer Science, 2024, 42 : 352 - 363