Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure

被引:18
|
作者
Zhang, Jingchao [1 ,2 ]
Wang, Xinyu [3 ]
Hong, Yang [4 ]
Xiong, Qingang [5 ]
Jiang, Jin [1 ,6 ]
Yue, Yanan [1 ,6 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China
[2] Univ Nebraska, Holland Comp Ctr, Lincoln, NE 68588 USA
[3] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[4] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[6] Minist Educ, State Lab Hydraul Machinery Transients, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
hexagonal boron nitride; interfacial thermal resistance; thermal rectification; molecular dynamics; phonon thermal transport; MOLECULAR-DYNAMICS SIMULATION; BILAYER HETEROSTRUCTURE; PHONON TRANSPORT; CONDUCTIVITY; GRAPHENE; CONDUCTANCE; RECTIFICATION; TEMPERATURE; PHOSPHORENE; RESISTANCE;
D O I
10.1088/1361-6528/28/3/035404
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, thermal transport at the junction of an asymmetric layer hexagonal boron-nitride (h-BN) heterostructure is explored using a non-equilibrium molecular dynamics method. A thermal contact resistance of 3.6 x 10(-11) K . m(2)W(-1) is characterized at a temperature of 300 K with heat flux from the trilayer to monolayer regions. The mismatch in the flexural phonon modes revealed by power spectra analysis provides the driving force for the calculated thermal resistance. A high thermal rectification efficiency of 360% is calculated at the layer junction surpassing that of graphene. Several modulators, i.e. the system temperature, contact pressure and lateral dimensions, are applied to manipulate the thermal conductance and rectification across the interfaces. The predicted thermal rectification sustains positive correlations with temperature and phonon propagation lengths with little change to the coupling strength.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Phonon Thermal Transport at Interfaces of a Graphene/Vertically Aligned Carbon Nanotubes/Hexagonal Boron Nitride Sandwiched Heterostructure
    李檬璘
    Muhammad Asif Shakoori
    王瑞鹏
    李海鹏
    Chinese Physics Letters, 2024, 41 (01) : 61 - 66
  • [12] Phonon Thermal Transport at Interfaces of a Graphene/Vertically Aligned Carbon Nanotubes/Hexagonal Boron Nitride Sandwiched Heterostructure
    Li, Menglin
    Shakoori, Muhammad Asif
    Wang, Ruipeng
    Li, Haipeng
    CHINESE PHYSICS LETTERS, 2024, 41 (01)
  • [13] Charge carrier transport properties in layer structured hexagonal boron nitride
    Doan, T. C.
    Li, J.
    Lin, J. Y.
    Jiang, H. X.
    AIP ADVANCES, 2014, 4 (10):
  • [14] Thermal and transport properties of pristine single-layer hexagonal boron nitride: A first principles investigation
    Illera, Sergio
    Pruneda, Miguel
    Colombo, Luciano
    Ordejon, Pablo
    PHYSICAL REVIEW MATERIALS, 2017, 1 (04):
  • [15] Spontaneous transport of water nanodroplets on graphene and hexagonal boron nitride in-plane heterostructure
    Hao, Shaoqian
    Wang, Wenyuan
    Kou, Jianlong
    Wu, Fengmin
    EPL, 2022, 139 (03)
  • [16] Incommensurability and negative thermal expansion of single layer hexagonal boron nitride
    Kriegel, Marko A.
    Omambac, Karim M.
    Franzka, Steffen
    zu Heringdorf, Frank-J. Meyer
    Horn-von Hoegen, Michael
    APPLIED SURFACE SCIENCE, 2023, 624
  • [17] High Performance of the Thermal Transport in Graphene Supported on Hexagonal Boron Nitride
    Wang, Xiaoming
    Huang, Tianlan
    Lu, Shushen
    APPLIED PHYSICS EXPRESS, 2013, 6 (07)
  • [18] Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride
    Li, Shasha
    Chen, Yue
    SCIENTIFIC REPORTS, 2017, 7
  • [19] Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride
    Shasha Li
    Yue Chen
    Scientific Reports, 7
  • [20] Thermal annealing effect on the electrical quality of graphene/hexagonal boron nitride heterostructure devices
    Pan, Haiyang
    Wang, Qiaoming
    Wu, Xiaohua
    Song, Tingting
    Song, Qiuming
    Wang, Jue
    NANOTECHNOLOGY, 2020, 31 (35)