Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure

被引:18
|
作者
Zhang, Jingchao [1 ,2 ]
Wang, Xinyu [3 ]
Hong, Yang [4 ]
Xiong, Qingang [5 ]
Jiang, Jin [1 ,6 ]
Yue, Yanan [1 ,6 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China
[2] Univ Nebraska, Holland Comp Ctr, Lincoln, NE 68588 USA
[3] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[4] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[6] Minist Educ, State Lab Hydraul Machinery Transients, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
hexagonal boron nitride; interfacial thermal resistance; thermal rectification; molecular dynamics; phonon thermal transport; MOLECULAR-DYNAMICS SIMULATION; BILAYER HETEROSTRUCTURE; PHONON TRANSPORT; CONDUCTIVITY; GRAPHENE; CONDUCTANCE; RECTIFICATION; TEMPERATURE; PHOSPHORENE; RESISTANCE;
D O I
10.1088/1361-6528/28/3/035404
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, thermal transport at the junction of an asymmetric layer hexagonal boron-nitride (h-BN) heterostructure is explored using a non-equilibrium molecular dynamics method. A thermal contact resistance of 3.6 x 10(-11) K . m(2)W(-1) is characterized at a temperature of 300 K with heat flux from the trilayer to monolayer regions. The mismatch in the flexural phonon modes revealed by power spectra analysis provides the driving force for the calculated thermal resistance. A high thermal rectification efficiency of 360% is calculated at the layer junction surpassing that of graphene. Several modulators, i.e. the system temperature, contact pressure and lateral dimensions, are applied to manipulate the thermal conductance and rectification across the interfaces. The predicted thermal rectification sustains positive correlations with temperature and phonon propagation lengths with little change to the coupling strength.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Mono layer graphene/hexagonal boron nitride heterostructure
    Jain, Nikhil
    Bansal, Tanesh
    Durcan, Christopher A.
    Xu, Yang
    Yu, Bin
    CARBON, 2013, 54 : 396 - 402
  • [2] Thermal transport across graphene and single layer hexagonal boron nitride
    Zhang, Jingchao
    Hong, Yang
    Yue, Yanan
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (13)
  • [3] Thermal transport in hexagonal boron nitride nanoribbons
    Tao Ouyang
    Chen, Yuanping
    Xie, Yuee
    Yang, Kaike
    Bao, Zhigang
    Zhong, Jianxin
    NANOTECHNOLOGY, 2010, 21 (24)
  • [4] Vertical transport in graphene-hexagonal boron nitride heterostructure devices
    Bruzzone, Samantha
    Logoteta, Demetrio
    Fiori, Gianluca
    lannaccone, Giuseppe
    SCIENTIFIC REPORTS, 2015, 5
  • [5] Vertical transport in graphene-hexagonal boron nitride heterostructure devices
    Samantha Bruzzone
    Demetrio Logoteta
    Gianluca Fiori
    Giuseppe Iannaccone
    Scientific Reports, 5
  • [6] Anisotropic thermal transport in bulk hexagonal boron nitride
    Jiang, Puqing
    Qian, Xin
    Yang, Ronggui
    Lindsay, Lucas
    PHYSICAL REVIEW MATERIALS, 2018, 2 (06):
  • [7] Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride
    Jo, Insun
    Pettes, Michael Thompson
    Kim, Jaehyun
    Watanabe, Kenji
    Taniguchi, Takashi
    Yao, Zhen
    Shi, Li
    NANO LETTERS, 2013, 13 (02) : 550 - 554
  • [8] Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites
    Hamidinejad, Mandi
    Zandieh, Azadeh
    Lee, Jung H.
    Papillon, Justine
    Zhao, Biao
    Moghimian, Nima
    Maire, Eric
    Filleter, Tobin
    Park, Chul B.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) : 41726 - 41735
  • [9] Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes
    Lindsay, L.
    Broido, D. A.
    PHYSICAL REVIEW B, 2012, 85 (03)
  • [10] The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure
    Ren, Weijun
    Ouyang, Yulou
    Jiang, Pengfei
    Yu, Cuiqian
    He, Jia
    Chen, Jie
    NANO LETTERS, 2021, 21 (06) : 2634 - 2641