Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure

被引:18
作者
Zhang, Jingchao [1 ,2 ]
Wang, Xinyu [3 ]
Hong, Yang [4 ]
Xiong, Qingang [5 ]
Jiang, Jin [1 ,6 ]
Yue, Yanan [1 ,6 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China
[2] Univ Nebraska, Holland Comp Ctr, Lincoln, NE 68588 USA
[3] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[4] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[6] Minist Educ, State Lab Hydraul Machinery Transients, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
hexagonal boron nitride; interfacial thermal resistance; thermal rectification; molecular dynamics; phonon thermal transport; MOLECULAR-DYNAMICS SIMULATION; BILAYER HETEROSTRUCTURE; PHONON TRANSPORT; CONDUCTIVITY; GRAPHENE; CONDUCTANCE; RECTIFICATION; TEMPERATURE; PHOSPHORENE; RESISTANCE;
D O I
10.1088/1361-6528/28/3/035404
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, thermal transport at the junction of an asymmetric layer hexagonal boron-nitride (h-BN) heterostructure is explored using a non-equilibrium molecular dynamics method. A thermal contact resistance of 3.6 x 10(-11) K . m(2)W(-1) is characterized at a temperature of 300 K with heat flux from the trilayer to monolayer regions. The mismatch in the flexural phonon modes revealed by power spectra analysis provides the driving force for the calculated thermal resistance. A high thermal rectification efficiency of 360% is calculated at the layer junction surpassing that of graphene. Several modulators, i.e. the system temperature, contact pressure and lateral dimensions, are applied to manipulate the thermal conductance and rectification across the interfaces. The predicted thermal rectification sustains positive correlations with temperature and phonon propagation lengths with little change to the coupling strength.
引用
收藏
页数:9
相关论文
共 60 条
[1]  
[Anonymous], 2014, J PHYS D APPL PHYS
[2]   Thermal contact resistance across nanoscale silicon dioxide and silicon interface [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
[3]   Molecular dynamics study on thermal transport at carbon nanotube interface junctions: Effects of mechanical force and chemical functionalization [J].
Chen, Wen ;
Zhang, Jingchao ;
Yue, Yanan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 :1058-1064
[4]   Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance [J].
Diao, Jiankuai ;
Srivastava, Deepak ;
Menon, Madhu .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (16)
[5]   STRUCTURE AND LOW-TEMPERATURE THERMAL-CONDUCTIVITY OF PYROLYTIC BORON-NITRIDE [J].
DUCLAUX, L ;
NYSTEN, B ;
ISSI, JP ;
MOORE, AW .
PHYSICAL REVIEW B, 1992, 46 (06) :3362-3367
[6]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[7]   Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet [J].
Hong, Yang ;
Zhang, Jingchao ;
Zeng, Xiao Cheng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (35) :24164-24170
[8]   Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene [J].
Hong, Yang ;
Zhang, Jingchao ;
Huang, Xiaopeng ;
Zeng, Xiao Cheng .
NANOSCALE, 2015, 7 (44) :18716-18724
[9]   Proton transport through one-atom-thick crystals [J].
Hu, S. ;
Lozada-Hidalgo, M. ;
Wang, F. C. ;
Mishchenko, A. ;
Schedin, F. ;
Nair, R. R. ;
Hill, E. W. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Dryfe, R. A. W. ;
Grigorieva, I. V. ;
Wu, H. A. ;
Geim, A. K. .
NATURE, 2014, 516 (7530) :227-+
[10]  
Jin-Cheng Z, 2016, 2D MATER, V3