On Convergents of Certain Values of Hyperbolic Functions Formed from Diophantine Equations

被引:3
作者
Chaichana, Tuangrat
Komatsu, Takao
Laohakosol, Vichian
机构
[1] Chulalongkorn Univ, Bangkok 10330, Thailand
[2] Hirosaki Univ, Hirosaki, Aomori 0368561, Japan
[3] Kasetsart Univ, Bangkok 10900, Thailand
基金
日本学术振兴会;
关键词
hyperbolic functions; Hurwitz continued fractions; Diophantine equations; RATIONAL-APPROXIMATIONS; LEAPING CONVERGENTS; HURWITZ;
D O I
10.3836/tjm/1374497522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let xi = root v/u tanh(uv)(-1/2), where u and v are positive integers, and let eta = vertical bar h(xi)vertical bar, where h (t) is a non-constant rational function with algebraic coefficients. We compute upper and lower bounds for the approximation of certain values eta of hyperbolic functions by rationals x/y such that x and y satisfy Diophantine equations. We show that there are infinitely many coprime integers x and y such that vertical bar y eta - x vertical bar << log log y/log y and a Diophantine equation holds simultaneously relating x and y and some integer z. Conversely, all positive integers x and y with y >= c(0) solving the Diophantine equation satisfy vertical bar y eta - x vertical bar >> log log y/log y.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 17 条
[1]   On diophantine approximation along algebraic curves [J].
Burger, Edward B. ;
Pillai, Ashok M. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) :11-19
[2]  
Cohen H., 2007, Analytic and Modern Tools, Graduate Texts in Mathematics, V240
[3]  
Cohen Henri., 2007, GRADUATE TEXTS MATH
[4]  
DICKSON L. E., 2005, History of the Theory of Numbers, Vol. II: Diophantine Analysis, VII, DOI DOI 10.1007/BF01705606
[5]  
Elsner C, 2003, FIBONACCI QUART, V41, P98
[6]  
ELSNER C., 2007, J THEOR NOMBR BORDX, V19, P387
[7]  
ELSNER C, 1999, C MATH, V79, P133
[8]   A recurrence formula for leaping convergents of non-regular continued fractions [J].
Elsner, Carsten ;
Komatsu, Takao .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) :824-833
[9]   ON CONVERGENTS FORMED FROM DIOPHANTINE EQUATIONS [J].
Elsner, Carsten ;
Komatsu, Takao ;
Shiokawa, Iekata .
GLASNIK MATEMATICKI, 2009, 44 (02) :267-284
[10]  
GEORGIKOPOULOS C., 1948, B SOC MATH GRECE, V24, P13