Diffeomorphism-invariant quantum field theories of connections in terms of webs

被引:27
作者
Lewandowski, J
Thiemann, T
机构
[1] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14473 Potsdam, Germany
关键词
D O I
10.1088/0264-9381/16/7/311
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the canonical quantization of gravity in terms of the Ashtekar variables one uses paths in the 3-space to construct the quantum states. Usually, one restricts oneself to families of paths admitting only a finite number of isolated intersections. This assumption implies a limitation on the diffeomorphisms invariance of the introduced structures. In this work, using the previous results of Baez and Sawin, we extend the existing results to a theory admitting all the possible piecewise-smooth finite paths and loops. In particular, we (a) characterize the spectrum of the Ashtekar-Isham configuration space, (b) introduce spin-web states, a generalization of the spin network states, (c) extend the diffeomorphism averaging to the spin-web states and derive a large class of diffeomorphism-invariant states and finally (d) extend the 3-geometry operators and the Hamiltonian operator.
引用
收藏
页码:2299 / 2322
页数:24
相关论文
共 38 条
[1]   DIFFERENTIAL GEOMETRY ON THE SPACE OF CONNECTIONS VIA GRAPHS AND PROJECTIVE-LIMITS [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (03) :191-230
[2]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[3]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[4]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[5]   REPRESENTATIONS OF THE HOLONOMY ALGEBRAS OF GRAVITY AND NON-ABELIAN GAUGE-THEORIES [J].
ASHTEKAR, A ;
ISHAM, CJ .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (06) :1433-1467
[6]   SU(N) quantum Yang-Mills theory in two dimensions: A complete solution [J].
Ashtekar, A ;
Lewandowski, J ;
Marolf, D ;
Mourao, J ;
Thiemann, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (11) :5453-5482
[7]   PROJECTIVE TECHNIQUES AND FUNCTIONAL-INTEGRATION FOR GAUGE-THEORIES [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2170-2191
[8]  
ASHTEKAR A, 1994, GEOMETRY CONSTRAINED
[9]  
ASHTEKAR A, 1995, J MATH PHYS, V36, P519
[10]  
Ashtekar A., 1998, Adv. Theor. Math. Phys, V1, P388, DOI DOI 10.4310/ATMP.1997.V1.N2.A8