Core/Shell Nanostructures of Metal Oxide Semiconductors (MOS) have attracted much attention because of their most fascinating tunable applications. These core shell morphologies can be easily engineered to enhance the unique properties of the metal-oxide nanostructures, which make them suitable as photocatalyst due to their high catalytic activity, substantial stability, and brilliant perspective in applications. This paper provides an overview on our work on the synthesis of some interesting core/shell nanostructures of MOS such as ZnO-TiO2, ZnO-MoO3, and V2O5-TiO2 using a low temperature wet chemical route and hydrothermal techniques and their photocatalytic properties from the aspects of different shell materials and shell thicknesses. The effect of process parameters such as pH, temperature, and ratio of core and shell materials, was systematically studied. Here the evidence for the core shell formation with different shell thicknesses came from the X-ray diffraction peak intensities. The shell thickness variation was also confirmed by Transmission Electron Microscopic studies. Effect of shell thickness on optical band gap of the core shell fabricated was also investigated using DRS UV-Visible spectroscopy. A comprehensive study was carried out for the photocatalytic efficiency of core shell nanostructures by evaluating the photo-degradation of Acridine Orange (AO) dye in aqueous solution under visible and solar light irradiations. These results offered simple approaches to the nanoscale engineering and synthesis of MOS hybrid systems to serve as better photocatalytic materials.