State-of-the-art on spatio-temporal information-based video retrieval

被引:30
|
作者
Ren, W. [2 ]
Singh, S. [1 ]
Singh, M. [1 ]
Zhu, Y. S. [2 ]
机构
[1] Univ Loughborough, Res Sch Informat, Loughborough LE11 3TU, Leics, England
[2] Peking Univ, Shenzhen Grad Sch, Key Lab Integrated Microsyst, Beijing, Peoples R China
基金
新加坡国家研究基金会;
关键词
Video retrieval; Semantic knowledge; Content-based analysis; Spatio-temporal information; SPATIAL KNOWLEDGE REPRESENTATION; SIMILARITY RETRIEVAL; RELEVANCE-FEEDBACK; IMAGE RETRIEVAL; MOTION; RECOGNITION; DESIGN; SHAPE; IMPLEMENTATION; OBJECTS;
D O I
10.1016/j.patcog.2008.08.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video retrieval is increasingly based on image content. A number of studies on video retrieval have used low-level pixel content related to statistical moments, shape, colour and texture. However, it is well recognised that such information is not enough for uniquely discriminating across different multimedia content. The use of semantic information, especially which derived from spatio-temporal analysis is of great value in multimedia annotation, archiving and retrieval. In this review paper, we detail how the use of spatiotemporal semantic knowledge is changing the way in which modern research the conducted. In this paper we review a number of studies and concepts related to such analysis, and draw important conclusions on where future research is headed. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:267 / 282
页数:16
相关论文
共 50 条
  • [31] MST-CSS (Multi-Spectro-Temporal Curvature Scale Space), a Novel Spatio-Temporal Representation for Content-Based Video Retrieval
    Dyana, A.
    Das, Sukhendu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (08) : 1080 - 1094
  • [32] Detecting Human Action as the Spatio-Temporal Tube of Maximum Mutual Information
    Wang, Taiqing
    Wang, Shengjin
    Ding, Xiaoqing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (02) : 277 - 290
  • [33] Predicting Activities of Daily Living with Spatio-Temporal Information
    Chua, Sook-Ling
    Foo, Lee Kien
    Guesgen, Hans W.
    FUTURE INTERNET, 2020, 12 (12): : 1 - 13
  • [34] Automatic Sow Nursing Behaviour Recognition Based on Spatio-temporal Information Fusion
    Gan H.
    Xue Y.
    Li S.
    Yang X.
    Chen C.
    Ou M.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 : 357 - 363
  • [35] Spatio-Temporal Video Segmentation of Static Scenes and Its Applications
    Jiang, Hanqing
    Zhang, Guofeng
    Wang, Huiyan
    Bao, Hujun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (01) : 3 - 15
  • [36] Vulnerability Assessment for Forest Ecosystem to Climate Change Based on Spatio-temporal Information
    Byun, Jungyeon
    Lee, Woo-Kyun
    Choi, Sungho
    Oh, Suhyun
    Yoo, Seongjin
    Kwon, Taesung
    Sung, Joohan
    Woo, Jaewook
    KOREAN JOURNAL OF REMOTE SENSING, 2012, 28 (01) : 159 - 169
  • [37] Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts
    Xu, Dan
    Song, Rui
    Wu, Xinyu
    Li, Nannan
    Feng, Wei
    Qian, Huihuan
    NEUROCOMPUTING, 2014, 143 : 144 - 152
  • [38] Multiple Spatio-temporal Feature Learning for Video-based Emotion Recognition in the Wild
    Lu, Cheng
    Zheng, Wenming
    Li, Chaolong
    Tang, Chuangao
    Liu, Suyuan
    Yan, Simeng
    Zong, Yuan
    ICMI'18: PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2018, : 646 - 652
  • [39] Learning Deep Spatio-Temporal Dependence for Semantic Video Segmentation
    Qiu, Zhaofan
    Yao, Ting
    Mei, Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (04) : 939 - 949
  • [40] Region-based shape incorporation for probabilistic spatio-temporal video object segmentation
    Ahmed, Rakib
    Karmakar, Gour C.
    Dooley, Laurence S.
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 2445 - +