State-of-the-art on spatio-temporal information-based video retrieval

被引:30
|
作者
Ren, W. [2 ]
Singh, S. [1 ]
Singh, M. [1 ]
Zhu, Y. S. [2 ]
机构
[1] Univ Loughborough, Res Sch Informat, Loughborough LE11 3TU, Leics, England
[2] Peking Univ, Shenzhen Grad Sch, Key Lab Integrated Microsyst, Beijing, Peoples R China
基金
新加坡国家研究基金会;
关键词
Video retrieval; Semantic knowledge; Content-based analysis; Spatio-temporal information; SPATIAL KNOWLEDGE REPRESENTATION; SIMILARITY RETRIEVAL; RELEVANCE-FEEDBACK; IMAGE RETRIEVAL; MOTION; RECOGNITION; DESIGN; SHAPE; IMPLEMENTATION; OBJECTS;
D O I
10.1016/j.patcog.2008.08.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video retrieval is increasingly based on image content. A number of studies on video retrieval have used low-level pixel content related to statistical moments, shape, colour and texture. However, it is well recognised that such information is not enough for uniquely discriminating across different multimedia content. The use of semantic information, especially which derived from spatio-temporal analysis is of great value in multimedia annotation, archiving and retrieval. In this review paper, we detail how the use of spatiotemporal semantic knowledge is changing the way in which modern research the conducted. In this paper we review a number of studies and concepts related to such analysis, and draw important conclusions on where future research is headed. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:267 / 282
页数:16
相关论文
共 50 条
  • [1] A spatio-temporal pyramid matching for video retrieval
    Choi, Jaesik
    Wang, Ziyu
    Lee, Sang-Chul
    Jeon, Won J.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (06) : 660 - 669
  • [2] A Video Retrieval Algorithm Based on Spatio-temporal Feature Curves
    Chen, Xiuxin
    Jia, Kebin
    Zhuang, Xinyue
    2008 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2008, : 287 - 290
  • [3] Spatio-Temporal feature based VLAD for efficient Video retrieval
    Reddy, Mopuri K.
    Arora, Sahil
    Babu, R. Venkatesh
    2013 FOURTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2013,
  • [4] Spatio-temporal Salience Based Video Quality Assessment
    Gao, Xinbo
    Liul, Ni
    Lui, Wen
    Tao, Dacheng
    Li, Xuelong
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [5] Particle swarm optimized deep spatio-temporal features for efficient video retrieval
    Banerjee A.
    Kumar E.
    Ravinder M.
    International Journal of Information Technology, 2024, 16 (3) : 1763 - 1768
  • [6] Normal Spatio-Temporal Information Enhance for Unsupervised Video Anomaly Detection
    Wang, Jun
    Jia, Di
    Huang, Ziqing
    Zhang, Miaohui
    Ren, Xing
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10727 - 10745
  • [7] Normal Spatio-Temporal Information Enhance for Unsupervised Video Anomaly Detection
    Jun Wang
    Di Jia
    Ziqing Huang
    Miaohui Zhang
    Xing Ren
    Neural Processing Letters, 2023, 55 : 10727 - 10745
  • [8] Conditional deep clustering based transformed spatio-temporal features and fused distance for efficient video retrieval
    Banerjee A.
    Kumar E.
    Ravinder M.
    International Journal of Information Technology, 2023, 15 (5) : 2349 - 2355
  • [9] Video Text Tracking With a Spatio-Temporal Complementary Model
    Gao, Yuzhe
    Li, Xing
    Zhang, Jiajian
    Zhou, Yu
    Jin, Dian
    Wang, Jing
    Zhu, Shenggao
    Bai, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9321 - 9331
  • [10] Human Action Recognition Based on a Spatio-Temporal Video Autoencoder
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (11)