Besov regularity for elliptic boundary value problems in polygonal domains

被引:45
作者
Dahlke, S [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
关键词
elliptic boundary value problems; adaptive methods; besov spaces; wavelets;
D O I
10.1016/S0893-9659(99)00075-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the regularity of the solutions to elliptic boundary value problems in polygonal domains Omega contained in R-2. Especially, we consider the specific scale B-tau(alpha)(L-tau(Omega)), 1/tau = alpha/2 + 1/p, of Besov spaces. The regularity of the variational solution in these Besov spaces determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. The proofs are based on specific representations of the solutions which were, e.g., derived by Grisvard [1], and on characterizations of Besov spaces by wavelet expansions. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 14 条
[1]   Besov regularity for elliptic boundary value problems [J].
Dahlke, S ;
DeVore, RA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (1-2) :1-16
[2]  
DAHLKE S, 1997, WAVELETS CONSTRUCTIO
[3]  
DAHLKE S, 1997, MULTISCALE WAVELET M, P237
[4]  
DAUBECHIES I, 1992, CBMS NSF REGIONAL C, V61
[5]  
DEVORE RA, 1990, MATH COMPUT, V55, P625, DOI 10.1090/S0025-5718-1990-1035930-5
[6]   COMPRESSION OF WAVELET DECOMPOSITIONS [J].
DEVORE, RA ;
JAWERTH, B ;
POPOV, V .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) :737-785
[7]   INTERPOLATION OF BESOV-SPACES [J].
DEVORE, RA ;
POPOV, VA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (01) :397-414
[8]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[9]  
Grisvard P, 1992, RMA, V22
[10]  
HOCHMUTH R, 1998, A1398 FREE U BERL