A robust meta-classification strategy for cancer detection from MS data

被引:37
作者
Bhanot, G
Alexe, G [1 ]
Venkataraghavan, B
Levine, AJ
机构
[1] Thomas J Watson IBM Res, Computat Biol Ctr, Yorktown Hts, NY 10598 USA
[2] Canc Inst New Jersey, Robert Wood Johnson Med Sch & Dent, New Brunswick, NJ USA
[3] Inst Adv Study, Ctr Syst Biol, Princeton, NJ 08540 USA
关键词
biomarker; diagnosis; meta-classifier; pattern extraction; prostate cancer;
D O I
10.1002/pmic.200500192
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We propose a novel method for phenotype identification involving a stringent noise analysis and filtering procedure followed by combining the results of several machine learning tools to produce a robust predictor. We illustrate our method on SELDI-TOF MS prostate cancer data (http:// home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp). Our method identified 11 proteomic biomarkers and gave significantly improved predictions over previous analyses with these data. We were able to distinguish cancer from non-cancer cases with a sensitivity of 90.31% and a specificity of 98.81%. The proposed method can be generalized to multi-phenotype prediction and other types of data (e.g., microarray data).
引用
收藏
页码:592 / 604
页数:13
相关论文
共 61 条
  • [1] Ovarian cancer detection by logical analysis of proteomic data
    Alexe, G
    Alexe, S
    Liotta, LA
    Petricoin, E
    Reiss, M
    Hammer, PL
    [J]. PROTEOMICS, 2004, 4 (03) : 766 - 783
  • [2] ALEXE G, IN PRESS DISCR APPL
  • [3] ALEXE G, 2003, RUTCOR RES REPORT, V7, P1
  • [4] ALEXE G, IN PRESS SOFT COMPUT
  • [5] Proteomic analysis of lung biopsies:: Differential protein expression profile between peritumoral and tumoral tissue
    Alfonso, P
    Catalá, M
    Rico-Morales, ML
    Durante-Rodríguez, G
    Moro-Rodríguez, E
    Fernández-García, H
    Escribano, JM
    Alvarez-Fernández, E
    García-Poblete, E
    [J]. PROTEOMICS, 2004, 4 (02) : 442 - 447
  • [6] Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum
    Anderle, M
    Roy, S
    Lin, H
    Becker, C
    Joho, K
    [J]. BIOINFORMATICS, 2004, 20 (18) : 3575 - 3582
  • [7] [Anonymous], 1983, Statistical methods
  • [8] Signal in noise: Evaluating reported reproducibility of serum proteomic tests for ovarian cancer
    Baggerly, KA
    Morris, JS
    Edmonson, SR
    Coombes, KR
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2005, 97 (04): : 307 - 309
  • [9] Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study
    Bar-Or, RL
    Maya, R
    Segel, LA
    Alon, U
    Levine, AJ
    Oren, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) : 11250 - 11255
  • [10] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300