Gender and Affect Recognition Based on GMM and GMM-UBM modeling with relevance MAP estimation

被引:0
作者
Gajsek, Rok [1 ]
Zibert, Janez [2 ]
Justin, Tadej [1 ]
Struc, Vitomir [1 ]
Vesnicer, Bostjan [3 ]
Mihelic, France [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Ljubljana 61000, Slovenia
[2] Univ Primorska, Dept Informat Sci & Technol, Primorska, Slovenia
[3] Alpineon Res & Dev, Ljubljana, Slovenia
来源
11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4 | 2010年
关键词
emotion recognition; affect recognition; gender recognition; GMM-UBM; MAP;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents our efforts in the Gender Sub-Challenge and the Affect Sub-Challenge of the INTERSPEECH 2010 Paralinguistic Challenge. The system for the Gender Sub-Challenge is based on modeling the Mel-Frequency Cepstrum Coefficients using Gaussian mixture models, building a separate model for each of the gender categories. For the Affect Sub-Challenge we propose a modeling schema where a universal background model is first trained an all the training data and then, employing the maximum a posteriori estimation criteria, a new feature vector of means is produced for each particular sample. The feature set used is comprised of low level descriptors from the baseline system, which in our case are split into four sub-sets, and modeled by its own model. Predictions from all sub-systems are fused using the sum rule fusion. Aside from the baseline regression procedure, we also evaluated the Support Vector Regression and compared the performance. Both systems achieve higher recognition results on the development set compared to baseline, but in the Affect Sub-Challenge our system's cross correlation is lower than that of the baseline system, although the mean linear error is slightly superior. In the Gender Sub-Challenge the unweighted average recall on the test set is 82.84%, and for the Affect Sub-Challenge the cross-correlation on the test set is 0.39 with mean linear error of 0.143.
引用
收藏
页码:2814 / +
页数:2
相关论文
共 50 条
[31]   Realization and Improvement Algorithm of GMM - UBM Model in Voiceprint Recognition [J].
Zhang, Jing .
PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, :2989-2992
[32]   Frequency features and GMM-UBM approach for gait-based person identification using smartphone inertial signals' [J].
San-Segundo, Ruben ;
Cordoba, Ricardo ;
Ferreiros, Javier ;
D'Haro-Enriquez, Luis Fernando .
PATTERN RECOGNITION LETTERS, 2016, 73 :60-67
[33]   GMM-UBM和SVM说话人辨认系统及融合的分析 [J].
鲍焕军 ;
郑方 .
清华大学学报(自然科学版), 2008, (自然科学版) :693-698
[34]   An Impact of Wideband Speech Codec Mismatch on a Performance of GMM-UBM Speaker Verification over Telecommunication Channel [J].
Polacky, Jozef ;
Pocta, Peter ;
Jarina, Roman .
2016 ELEKTRO 11TH INTERNATIONAL CONFERENCE, 2016, :77-82
[35]   基于GMM-UBM/SVM的维吾尔语电话语音监控系统 [J].
李晓阳 ;
伊达瓦 ;
吾守尔斯拉木 ;
勾坂芳典 .
计算机应用与软件, 2012, 29 (01) :46-48+77
[36]   基于GMM-UBM的声纹识别技术的特征参数研究 [J].
周玥媛 ;
孔钦 .
计算机技术与发展, 2020, 30 (05) :76-83
[37]   GMM-UBM语种识别技术在无线电监管中的应用 [J].
田昕 ;
唐皓 ;
余江 ;
蔡光卉 ;
肖文珂 .
电子测量技术, 2015, (08) :82-84
[38]   Speech imitation skills predict automatic phonetic convergence: a GMM-UBM study on L2 [J].
de Jong, Dorina ;
Pastore, Aldo ;
Nguyen, Noel ;
D'Ausilio, Alessandro .
INTERSPEECH 2022, 2022, :769-773
[39]   Structural MAP Adaptation in GMM-Supervector based Speaker Recognition [J].
Ferras, Marc ;
Shinoda, Koichi ;
Furui, Sadaoki .
2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, :5432-5435
[40]   基于两种GMM-UBM多维概率输出的SVM语音情感识别 [J].
黄永明 ;
章国宝 ;
董飞 ;
达飞鹏 .
计算机应用研究, 2011, 28 (01) :98-101