Gender and Affect Recognition Based on GMM and GMM-UBM modeling with relevance MAP estimation

被引:0
作者
Gajsek, Rok [1 ]
Zibert, Janez [2 ]
Justin, Tadej [1 ]
Struc, Vitomir [1 ]
Vesnicer, Bostjan [3 ]
Mihelic, France [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Ljubljana 61000, Slovenia
[2] Univ Primorska, Dept Informat Sci & Technol, Primorska, Slovenia
[3] Alpineon Res & Dev, Ljubljana, Slovenia
来源
11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4 | 2010年
关键词
emotion recognition; affect recognition; gender recognition; GMM-UBM; MAP;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents our efforts in the Gender Sub-Challenge and the Affect Sub-Challenge of the INTERSPEECH 2010 Paralinguistic Challenge. The system for the Gender Sub-Challenge is based on modeling the Mel-Frequency Cepstrum Coefficients using Gaussian mixture models, building a separate model for each of the gender categories. For the Affect Sub-Challenge we propose a modeling schema where a universal background model is first trained an all the training data and then, employing the maximum a posteriori estimation criteria, a new feature vector of means is produced for each particular sample. The feature set used is comprised of low level descriptors from the baseline system, which in our case are split into four sub-sets, and modeled by its own model. Predictions from all sub-systems are fused using the sum rule fusion. Aside from the baseline regression procedure, we also evaluated the Support Vector Regression and compared the performance. Both systems achieve higher recognition results on the development set compared to baseline, but in the Affect Sub-Challenge our system's cross correlation is lower than that of the baseline system, although the mean linear error is slightly superior. In the Gender Sub-Challenge the unweighted average recall on the test set is 82.84%, and for the Affect Sub-Challenge the cross-correlation on the test set is 0.39 with mean linear error of 0.143.
引用
收藏
页码:2814 / +
页数:2
相关论文
共 50 条
[21]   基于GMM-UBM的说话人确认系统的研究 [J].
霍春宝 ;
张彩娟 ;
赵红敏 .
辽宁工业大学学报(自然科学版), 2012, 32 (02) :98-101
[22]   A GMM-UBM Based Multi-speaker Re-segmentation and Re-clustering Algorithm [J].
Su, Yahui ;
Lu, Xuanmin .
2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2018, :1048-1051
[23]   Automatic Speaker Verification on Myanmar Spoofing Voice Data using GMM-UBM and TDNN [J].
Phyu, Win Lai Lai ;
Pa, Win Pa ;
Naing, Hay Mar Soe .
PROCEEDINGS OF THE 6TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA IN ASIA WORKSHOPS, MMASIA 2024 WORKSHOPS, 2024,
[24]   GMM-UBM和SVM在说话人识别中的应用 [J].
李荟 ;
赵云敏 .
计算机系统应用, 2018, 27 (01) :225-230
[25]   Noise Robust Speaker Verification using GMM-UBM Multi-Condition Training [J].
Mekonnen, Bezawit Wubishet ;
Dufera, Bisrat Derebssa .
PROCEEDINGS OF THE 2015 12TH IEEE AFRICON INTERNATIONAL CONFERENCE - GREEN INNOVATION FOR AFRICAN RENAISSANCE (AFRICON), 2015,
[26]   基于SDC特征和GMM-UBM模型的自动语种识别 [J].
姜洪臣 ;
郑榕 ;
张树武 ;
徐波 .
中文信息学报, 2007, (01) :49-53
[27]   Type-2 fuzzy GMM-UBM for text-independent speaker verification [J].
Pinheiro, Hector N. B. ;
Ren, Tsang Ing ;
Cavalcanti, George D. C. ;
Jyh, Tsang Ing ;
Sijbers, Jan .
2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, :4328-4331
[28]   基于GMM-UBM说话人模型的连续自适应算法研究 [J].
张正平 ;
张丽娜 ;
贺松 .
通信电源技术, 2016, 33 (02) :81-83
[29]   GMM-UBM和SVM说话人辨认系统及融合的分析 [J].
鲍焕军 ;
郑方 .
清华大学学报(自然科学版), 2008, (S1) :693-698
[30]   基于子带GMM-UBM的广播语音多语种识别 [J].
李思一 ;
戴蓓蒨 ;
王海祥 .
数据采集与处理, 2007, (01) :14-18