Composite Clustering Sampling Strategy for Multiscale Spectral-Spatial Classification of Hyperspectral Images

被引:0
|
作者
Li, Chenming [1 ]
Qu, Xiaoyu [1 ]
Yang, Yao [1 ]
Yao, Dan [1 ]
Gao, Hongmin [1 ]
Hua, Zaijun [1 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing 211100, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会; 中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1155/2020/9637839
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, many high-performance spectral-spatial classification methods were proposed in the field of hyperspectral image classification. At present, a great quantity of studies has focused on developing methods to improve classification accuracy. However, some research has shown that the widely adopted pixel-based random sampling strategy is not suitable for spectral-spatial hyperspectral image classification algorithms. Therefore, a composite clustering sampling strategy is proposed, which can greatly reduce the overlap between the training set and the test set, while making sample points in the training set sufficiently representative in the spectral domain. At the same time, in order to solve problems of a three-dimensional Convolutional Neural Network which is commonly used in spectral-spatial hyperspectral image classification methods, such as long training time and large computing resource requirements, a multiscale spectral-spatial hyperspectral image classification model based on a two-dimensional Convolutional Neural Network is proposed, which effectively reduces the training time and computing resource requirements.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Multi-scale superpixel spectral-spatial classification of hyperspectral images
    Li, Shanshan
    Ni, Li
    Jia, Xiuping
    Gao, Lianru
    Zhang, Bing
    Peng, Man
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (20) : 4905 - 4922
  • [42] Locality Adaptive Discriminant Analysis for Spectral-Spatial Classification of Hyperspectral Images
    Wang, Qi
    Meng, Zhaotie
    Li, Xuelong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) : 2077 - 2081
  • [43] An Improved Spectral-Spatial Classification Framework for Hyperspectral Remote Sensing Images
    Chen, Zhao
    Wang, Bin
    2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 532 - 536
  • [44] Spectral-spatial classification of hyperspectral images using deep Boltzmann machines
    Yang J.
    Wang X.
    Liu S.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 109 - 115
  • [45] A Decompressed Spectral-Spatial Multiscale Semantic Feature Network for Hyperspectral Image Classification
    Liu, Dongxu
    Li, Qingqing
    Li, Meihui
    Zhang, Jianlin
    REMOTE SENSING, 2023, 15 (18)
  • [46] Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12): : 7738 - 7749
  • [47] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES WITH MULTI-LEVEL CNN
    Chhapariya, Koushikey
    Buddhiraju, Krishna Mohan
    Kumar, Anil
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [48] A two-stage method for spectral-spatial classification of hyperspectral images
    Chan, Raymond H.
    Kan, Kelvin K.
    Nikolova, Mila
    Plemmons, Robert J.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (6-7) : 790 - 807
  • [49] AN ENSEMBLE ACTIVE LEARNING APPROACH FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Zhang, Zhou
    Crawford, Melba M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4963 - 4966
  • [50] Alternately Updated Spectral-Spatial Convolution Network for the Classification of Hyperspectral Images
    Wang, Wenju
    Dou, Shuguang
    Wang, Sen
    REMOTE SENSING, 2019, 11 (15)