An Imprecise Probabilistic Estimator for the Transition Rate Matrix of a Continuous-Time Markov Chain

被引:1
作者
Krak, Thomas [1 ]
Erreygers, Alexander [1 ]
De Bock, Jasper [1 ]
机构
[1] Univ Ghent, ELIS, SYSTeMS, Ghent, Belgium
来源
UNCERTAINTY MODELLING IN DATA SCIENCE | 2019年 / 832卷
基金
欧盟地平线“2020”;
关键词
INFERENCE;
D O I
10.1007/978-3-319-97547-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of estimating the transition rate matrix of a continuous-time Markov chain from a finite-duration realisation of this process. We approach this problem in an imprecise probabilistic framework, using a set of prior distributions on the unknown transition rate matrix. The resulting estimator is a set of transition rate matrices that, for reasons of conjugacy, is easy to find. To determine the hyperparameters for our set of priors, we reconsider the problem in discrete time, where we can use the well-known Imprecise Dirichlet Model. In particular, we show how the limit of the resulting discrete-time estimators is a continuous-time estimator. It corresponds to a specific choice of hyperparameters and has an exceptionally simple closed-form expression.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2015, APPL MATH COMPUT, DOI DOI 10.1016/J.AMC.2014.10.092
[2]  
Augustin T, 2014, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118763117
[3]  
Berger J.O., 1985, STAT DECISION THEORY
[4]   Statistical inference for discretely observed Markov jump processes [J].
Bladt, M ;
Sorensen, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :395-410
[5]   The Limit Behaviour of Imprecise Continuous-Time Markov Chains [J].
De Bock, Jasper .
JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) :159-196
[6]   Coherent Predictive Inference under Exchangeability with Imprecise Probabilities [J].
de Cooman, Gert ;
De Bock, Jasper ;
Diniz, Marcio Alves .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2015, 52 :1-95
[7]  
Erreygers A., 2017, P ISIPTA 2017, P145
[8]  
Inamura Y., 2006, ESTIMATING CONTINUOU
[9]   Imprecise continuous-time Markov chains [J].
Krak, Thomas ;
De Bock, Jasper ;
Siebes, Arno .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 88 :452-528
[10]  
Norris J.R., 1998, MARKOV CHAINS STAT P