Metabolic Reprogramming in Tumor Endothelial Cells

被引:40
作者
Garcia-Caballero, Melissa [1 ,2 ,5 ]
Sokol, Liliana [1 ,2 ]
Cuypers, Anne [1 ,2 ]
Carmeliet, Peter [1 ,2 ,3 ,4 ]
机构
[1] VIB, Ctr Canc Biol, Lab Angiogenesis & Vasc Metab, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Oncol, Lab Angiogenesis & Vasc Metab, B-3000 Leuven, Belgium
[3] Univ Aarhus, Dept Biomed, Lab Angiogenesis & Vasc Heterogene, DK-8000 Aarhus, Denmark
[4] Khalifa Univ Sci & Technol, Ctr Biotechnol, Abu Dhabi 127788, U Arab Emirates
[5] Univ Malaga, IBIMA Biomed Res Inst Malaga BIONAND Platform, Andalucia Tech, Dept Mol Biol & Biochem,Fac Sci, Malaga 29590, Spain
基金
欧洲研究理事会;
关键词
tumor microenvironment; tumor angiogenesis; tumor endothelial cell metabolism; metabolic reprogramming; FACTOR RECEPTOR 2; IN-VIVO; VESSEL NORMALIZATION; VASCULAR MIMICRY; GENE-EXPRESSION; ANGIOGENESIS; CANCER; ACID; GLUTAMINE; INHIBITION;
D O I
10.3390/ijms231911052
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dynamic crosstalk between the different components of the tumor microenvironment is critical to determine cancer progression, metastatic dissemination, tumor immunity, and therapeutic responses. Angiogenesis is critical for tumor growth, and abnormal blood vessels contribute to hypoxia and acidosis in the tumor microenvironment. In this hostile environment, cancer and stromal cells have the ability to alter their metabolism in order to support the high energetic demands and favor rapid tumor proliferation. Recent advances have shown that tumor endothelial cell metabolism is reprogrammed, and that targeting endothelial metabolic pathways impacts developmental and pathological vessel sprouting. Therefore, the use of metabolic antiangiogenic therapies to normalize the blood vasculature, in combination with immunotherapies, offers a clinical niche to treat cancer.
引用
收藏
页数:19
相关论文
共 120 条
[1]   SHORT-TERM STARVATION ALTERS THE FREE AMINO-ACID CONTENT OF THE HUMAN INTESTINAL-MUCOSA [J].
AHLMAN, B ;
ANDERSSON, K ;
LEIJONMARCK, CE ;
LJUNGQVIST, O ;
HEDENBORG, L ;
WERNERMAN, J .
CLINICAL SCIENCE, 1994, 86 (06) :653-662
[2]   Serine and glycine metabolism in cancer [J].
Amelio, Ivano ;
Cutruzzola, Francesca ;
Antonov, Alexey ;
Agostini, Massimiliano ;
Melino, Gerry .
TRENDS IN BIOCHEMICAL SCIENCES, 2014, 39 (04) :191-198
[4]   Immunomodulation by endothelial cells - partnering up with the immune system? [J].
Amersfoort, Jacob ;
Eelen, Guy ;
Carmeliet, Peter .
NATURE REVIEWS IMMUNOLOGY, 2022, 22 (09) :576-588
[5]   Perhexiline [J].
Ashrafian, Houman ;
Horowitz, John D. ;
Frenneaux, Michael P. .
CARDIOVASCULAR DRUG REVIEWS, 2007, 25 (01) :76-97
[6]   Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy [J].
Bader, Jackie E. ;
Voss, Kelsey ;
Rathmell, Jeffrey C. .
MOLECULAR CELL, 2020, 78 (06) :1019-1033
[7]   Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance [J].
Bagchi, Sreya ;
Yuan, Robert ;
Engleman, Edgar G. .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 16, 2021, 2021, 16 :223-249
[8]   Asparagine synthetase: regulation by cell stress and involvement in tumor biology [J].
Balasubramanian, Mukundh N. ;
Butterworth, Elizabeth A. ;
Kilberg, Michael S. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2013, 304 (08) :E789-E799
[9]   Effects of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo study in a melanoma model [J].
Bastos, Debora C. ;
Paupert, Jenny ;
Maillard, Catherine ;
Seguin, Fabiana ;
Carvalho, Marco A. ;
Agostini, Michelle ;
Coletta, Ricardo D. ;
Noel, Agnes ;
Graner, Edgard .
LABORATORY INVESTIGATION, 2017, 97 (02) :194-206
[10]   The Notch Ligands Dll4 and Jagged1 Have Opposing Effects on Angiogenesis [J].
Benedito, Rui ;
Roca, Cristina ;
Soerensen, Inga ;
Adams, Susanne ;
Gossler, Achim ;
Fruttiger, Marcus ;
Adams, Ralf H. .
CELL, 2009, 137 (06) :1124-1135