Jordan isomorphisms of generalized structural matrix rings

被引:3
作者
Dascalescu, S. [1 ]
Predut, S. [1 ]
van Wyk, L. [2 ]
机构
[1] Univ Bucharest, Fac Math, RO-010014 Bucharest 1, Romania
[2] Univ Stellenbosch, Dept Math Sci, Div Math, ZA-7602 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
structural matrix ring; block triangular matrix ring; Jordan isomorphism; bimodule;
D O I
10.1080/03081087.2012.686109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the sub-bimodules of matrix bimodules over two structural matrix rings. Structural matrix bimodules arise as particular such sub-bimodules, and we discuss when such a bimodule is faithful or indecomposable. As an application, we obtain a large class of rings whose Jordan isomorphisms are either ring isomorphisms or ring anti-isomorphisms. Complete upper block triangular matrix rings over 2-torsion-free indecomposable rings are elements of this class.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 4 条
[1]   Jordan isomorphisms of triangular matrix algebras over a connected commutative ring [J].
Beidar, KI ;
Bresar, M ;
Chebotar, MA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 312 (1-3) :197-201
[2]  
Molnar L., 1998, LINEAR MULTILINEAR A, V45, P189
[3]   SPECIAL RADICALS IN STRUCTURAL MATRIX-RINGS [J].
VANWYK, L .
COMMUNICATIONS IN ALGEBRA, 1988, 16 (02) :421-435
[4]   Jordan isomorphisms of triangular rings [J].
Wong, TL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) :3381-3388