An average Chebotarev Density Theorem for generic rank 2 Drinfeld modules with complex multiplication

被引:6
作者
Cojocaru, Alina Carmen [1 ,2 ]
Shulman, Andrew Michael [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Simion Stoilow Romanian Acad, Inst Math, Bucharest 010702, Romania
基金
美国国家科学基金会;
关键词
Drinfeld module; Weil number; Density theorem; Prime distribution; FIELDS;
D O I
10.1016/j.jnt.2012.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q be an odd prime power and let A = F-q[T], k = F-q(T). Let psi be a Drinfeld A-module over k, of rank 2 and with a non-trivial endomorphism ring. We prove an average effective Chebotarev Density Theorem for the primes splitting completely in the division fields k(psi[d]) of psi, with a very small error term. We also apply our techniques to study the primes of good reduction for psi for which the reduced A-module is cyclic. Published by Elsevier Inc.
引用
收藏
页码:897 / 914
页数:18
相关论文
共 16 条
[1]   Torsion bounds for elliptic curves and Drinfeld modules [J].
Breuer, Florian .
JOURNAL OF NUMBER THEORY, 2010, 130 (05) :1241-1250
[2]  
COJOCARU A. C., PREPRINT
[3]   Cyclicity of elliptic curves modulo p and elliptic curve analogues of Linnik's problem [J].
Cojocaru, AC ;
Murty, MR .
MATHEMATISCHE ANNALEN, 2004, 330 (03) :601-625
[4]  
Gardeyn F, 2002, ARCH MATH, V79, P241, DOI 10.1007/s00013-002-8310-5
[5]   ON FINITE DRINFELD MODULES [J].
GEKELER, EU .
JOURNAL OF ALGEBRA, 1991, 141 (01) :187-203
[6]  
Goss D., 1996, ERGEB MATH GRENZGEB, V35
[7]  
Hayes D., 1979, STUDIES ALGEBRA NUMB, V6, P173
[8]   On characteristic polynomials of geometric frobenius associated to Drinfeld modules [J].
Hsia, LC ;
Yu, J .
COMPOSITIO MATHEMATICA, 2000, 122 (03) :261-280
[9]  
Lagarias J., 1977, ALGEBRAIC NUMBER FIE, P409
[10]   ON ARTIN CONJECTURE [J].
MURTY, MR .
JOURNAL OF NUMBER THEORY, 1983, 16 (02) :147-168