A unified framework for semi-supervised dimensionality reduction

被引:173
作者
Song, Yangqiu [1 ]
Nie, Feiping [1 ]
Zhang, Changshui [1 ]
Xiang, Shiming [1 ]
机构
[1] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Tsinghua Natl Lab Informat Sci & Technol TNList, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
dimensionality reduction; discriminant analysis; manifold analysis; semi-supervised learning;
D O I
10.1016/j.patcog.2008.01.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In practice, many applications require a dimensionality reduction method to deal with the partially labeled problem. In this paper, we propose a semi-supervised dimensionality reduction framework, which can efficiently handle the unlabeled data. Under the framework, several classical methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), maximum margin criterion (MMC), locality preserving projections (LPP) and their corresponding kernel versions can be seen as special cases. For high-dimensional data, we can give a low-dimensional embedding result for both discriminating multi-class sub-manifolds and preserving local manifold structure. Experiments show that our algorithms can significantly improve the accuracy rates of the corresponding supervised and unsupervised approaches. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2789 / 2799
页数:11
相关论文
共 50 条
  • [31] Semi-supervised dimensionality reduction via sparse locality preserving projection
    Huijie Guo
    Hui Zou
    Junyan Tan
    Applied Intelligence, 2020, 50 : 1222 - 1232
  • [32] Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
    Hong, Danfeng
    Yokoya, Naoto
    Chanussot, Jocelyn
    Xu, Jian
    Zhu, Xiao Xiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 158 : 35 - 49
  • [33] Integrating local and global topological structures for semi-supervised dimensionality reduction
    Jia Wei
    Qun-fang Zeng
    Xuan Wang
    Jia-bing Wang
    Gui-hua Wen
    Soft Computing, 2014, 18 : 1189 - 1198
  • [34] Integrating local and global topological structures for semi-supervised dimensionality reduction
    Wei, Jia
    Zeng, Qun-fang
    Wang, Xuan
    Wang, Jia-bing
    Wen, Gui-hua
    SOFT COMPUTING, 2014, 18 (06) : 1189 - 1198
  • [35] DISEASE CLASSIFICATION AND PREDICTION VIA SEMI-SUPERVISED DIMENSIONALITY REDUCTION
    Batmanghelich, Kayhan N.
    Ye, Dong H.
    Pohl, Kilian M.
    Taskar, Ben
    Davatzikos, Christos
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1086 - 1090
  • [36] Semi-supervised classification based on random subspace dimensionality reduction
    Yu, Guoxian
    Zhang, Guoji
    Domeniconi, Carlotta
    Yu, Zhiwen
    You, Jane
    PATTERN RECOGNITION, 2012, 45 (03) : 1119 - 1135
  • [37] Discriminative Sparsity Preserving Projections for Semi-Supervised Dimensionality Reduction
    Gu, Nannan
    Fan, Mingyu
    Qiao, Hong
    Zhang, Bo
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (07) : 391 - 394
  • [38] Semi-supervised rough fuzzy Laplacian Eigenmaps for dimensionality reduction
    Ma, Minghua
    Deng, Tingquan
    Wang, Ning
    Chen, Yanmei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (02) : 397 - 411
  • [39] INSTANCE-LEVEL BASED DISCRIMINATIVE SEMI-SUPERVISED DIMENSIONALITY REDUCTION WITH CHUNKLETS
    Wang, Na
    Li, Xia
    Cui, Yingjie
    Pan, Jeng-Shyang
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2010, 6 (08): : 3763 - 3773
  • [40] Semi-Supervised Multi-Label Dimensionality Reduction Based on Dependence Maximization
    Yu, Yanming
    Wang, Jun
    Tan, Qiaoyu
    Jia, Lianyin
    Yu, Guoxian
    IEEE ACCESS, 2017, 5 : 21927 - 21940