A unified framework for semi-supervised dimensionality reduction

被引:173
|
作者
Song, Yangqiu [1 ]
Nie, Feiping [1 ]
Zhang, Changshui [1 ]
Xiang, Shiming [1 ]
机构
[1] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Tsinghua Natl Lab Informat Sci & Technol TNList, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
dimensionality reduction; discriminant analysis; manifold analysis; semi-supervised learning;
D O I
10.1016/j.patcog.2008.01.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In practice, many applications require a dimensionality reduction method to deal with the partially labeled problem. In this paper, we propose a semi-supervised dimensionality reduction framework, which can efficiently handle the unlabeled data. Under the framework, several classical methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), maximum margin criterion (MMC), locality preserving projections (LPP) and their corresponding kernel versions can be seen as special cases. For high-dimensional data, we can give a low-dimensional embedding result for both discriminating multi-class sub-manifolds and preserving local manifold structure. Experiments show that our algorithms can significantly improve the accuracy rates of the corresponding supervised and unsupervised approaches. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2789 / 2799
页数:11
相关论文
共 50 条
  • [1] A unified semi-supervised dimensionality reduction framework for manifold learning
    Chatpatanasiri, Ratthachat
    Kijsirikul, Boonserm
    NEUROCOMPUTING, 2010, 73 (10-12) : 1631 - 1640
  • [2] A unified dimensionality reduction framework for semi-paired and semi-supervised multi-view data
    Chen, Xiaohong
    Chen, Songcan
    Xue, Hui
    Zhou, Xudong
    PATTERN RECOGNITION, 2012, 45 (05) : 2005 - 2018
  • [3] A Framework for Semi-Supervised Clustering Based on Dimensionality Reduction
    Cui Peng
    Zhang Ru-bo
    FIRST INTERNATIONAL WORKSHOP ON DATABASE TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, : 192 - +
  • [4] Local Weighted Semi-supervised Discriminant Analysis for Dimensionality Reduction
    Wang, Honghua
    Sun, Yumei
    Li, Hongxiu
    Zhou, Mao
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL I, 2015, : 411 - 413
  • [5] Learning a tensor subspace for semi-supervised dimensionality reduction
    Zhang, Zhao
    Ye, Ning
    SOFT COMPUTING, 2011, 15 (02) : 383 - 395
  • [6] Learning a tensor subspace for semi-supervised dimensionality reduction
    Zhao Zhang
    Ning Ye
    Soft Computing, 2011, 15 : 383 - 395
  • [7] Semi-Supervised Dimensionality Reduction in Image Feature Space
    Cheng, Hao
    Hua, Kien A.
    Vu, Khanh
    Liu, Danzhou
    APPLIED COMPUTING 2008, VOLS 1-3, 2008, : 1207 - 1211
  • [8] Robust Path Based Semi-Supervised Dimensionality Reduction
    Yu, Guoxian
    Peng, Hong
    Ma, Qianli
    Wei, Jia
    ICIA: 2009 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-3, 2009, : 1233 - 1238
  • [9] Semi-Supervised Nonlinear Dimensionality Reduction with Pairwise Constraints
    Chen, Min
    Zhang, Zhao
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 5, 2010, : 116 - 121
  • [10] Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning
    Goenen, Mehmet
    PATTERN RECOGNITION LETTERS, 2014, 38 : 132 - 141