Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami

被引:132
作者
Chikkaraddy, Rohit [1 ]
Turek, V. A. [1 ]
Kongsuwan, Nuttawut [2 ]
Benz, Felix [1 ]
Carnegie, Cloudy [1 ]
van de Goor, Tim [1 ]
de Nijs, Bart [1 ]
Demetriadou, Angela [2 ]
Hess, Ortwin [2 ]
Keyser, Ulrich F. [1 ]
Baumberg, Jeremy J. [1 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thompson Ave, Cambridge CB3 0HE, England
[2] Imperial Coll London, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Single-molecule; DNA origami; plasmonics; nanocavities; nanoassembly; Purcell factor; strong coupling; SERS; SPONTANEOUS-EMISSION; FLUORESCENCE ENHANCEMENT; QUANTUM DOTS; LIGHT; SHAPES; SERS; NANOSTRUCTURES; NANOPARTICLES; EXCITATION; PLACEMENT;
D O I
10.1021/acs.nanolett.7b04283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of >= 4 X 10(3) with high quantum yield (>= 50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of +/- 1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.
引用
收藏
页码:405 / 411
页数:7
相关论文
共 69 条
  • [21] Rapid prototyping of 3D DNA-origami shapes with caDNAno
    Douglas, Shawn M.
    Marblestone, Adam H.
    Teerapittayanon, Surat
    Vazquez, Alejandro
    Church, George M.
    Shih, William M.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (15) : 5001 - 5006
  • [22] ENGLUND D, 2005, J PHYS REV LETT, V95
  • [23] Controlled phase shifts with a single quantum dot
    Fushman, Ilya
    Englund, Dirk
    Faraon, Andrei
    Stoltz, Nick
    Petroff, Pierre
    Vuckovic, Jelena
    [J]. SCIENCE, 2008, 320 (5877) : 769 - 772
  • [24] Engineering and mapping nanocavity emission via precision placement of DNA origami
    Gopinath, Ashwin
    Miyazono, Evan
    Faraon, Andrei
    Rothemund, Paul W. K.
    [J]. NATURE, 2016, 535 (7612) : 401 - +
  • [25] Quantum nature of a strongly coupled single quantum dot-cavity system
    Hennessy, K.
    Badolato, A.
    Winger, M.
    Gerace, D.
    Atatuere, M.
    Gulde, S.
    Faelt, S.
    Hu, E. L.
    Imamoglu, A.
    [J]. NATURE, 2007, 445 (7130) : 896 - 899
  • [26] Quantum yield and excitation rate of single molecules close to metallic nanostructures
    Holzmeister, Phil
    Pibiri, Enrico
    Schmied, Juergen J.
    Sen, Tapasi
    Acuna, Guillermo P.
    Tinnefeld, Philip
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [27] Gold Nanofingers for Molecule Trapping and Detection
    Hu, Min
    Ou, Fung Suong
    Wu, Wei
    Naumov, Ivan
    Li, Xuema
    Bratkovsky, Alexander M.
    Williams, R. Stanley
    Li, Zhiyong
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (37) : 12820 - 12822
  • [28] Hung AM, 2010, NAT NANOTECHNOL, V5, P121, DOI [10.1038/NNANO.2009.450, 10.1038/nnano.2009.450]
  • [29] Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays
    Ke, Yonggang
    Lindsay, Stuart
    Chang, Yung
    Liu, Yan
    Yan, Hao
    [J]. SCIENCE, 2008, 319 (5860) : 180 - 183
  • [30] Kershner RJ, 2009, NAT NANOTECHNOL, V4, P557, DOI [10.1038/nnano.2009.220, 10.1038/NNANO.2009.220]