Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami

被引:134
作者
Chikkaraddy, Rohit [1 ]
Turek, V. A. [1 ]
Kongsuwan, Nuttawut [2 ]
Benz, Felix [1 ]
Carnegie, Cloudy [1 ]
van de Goor, Tim [1 ]
de Nijs, Bart [1 ]
Demetriadou, Angela [2 ]
Hess, Ortwin [2 ]
Keyser, Ulrich F. [1 ]
Baumberg, Jeremy J. [1 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thompson Ave, Cambridge CB3 0HE, England
[2] Imperial Coll London, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Single-molecule; DNA origami; plasmonics; nanocavities; nanoassembly; Purcell factor; strong coupling; SERS; SPONTANEOUS-EMISSION; FLUORESCENCE ENHANCEMENT; QUANTUM DOTS; LIGHT; SHAPES; SERS; NANOSTRUCTURES; NANOPARTICLES; EXCITATION; PLACEMENT;
D O I
10.1021/acs.nanolett.7b04283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of >= 4 X 10(3) with high quantum yield (>= 50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of +/- 1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.
引用
收藏
页码:405 / 411
页数:7
相关论文
共 69 条
[21]   Rapid prototyping of 3D DNA-origami shapes with caDNAno [J].
Douglas, Shawn M. ;
Marblestone, Adam H. ;
Teerapittayanon, Surat ;
Vazquez, Alejandro ;
Church, George M. ;
Shih, William M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (15) :5001-5006
[22]  
ENGLUND D, 2005, J PHYS REV LETT, V95
[23]   Controlled phase shifts with a single quantum dot [J].
Fushman, Ilya ;
Englund, Dirk ;
Faraon, Andrei ;
Stoltz, Nick ;
Petroff, Pierre ;
Vuckovic, Jelena .
SCIENCE, 2008, 320 (5877) :769-772
[24]   Engineering and mapping nanocavity emission via precision placement of DNA origami [J].
Gopinath, Ashwin ;
Miyazono, Evan ;
Faraon, Andrei ;
Rothemund, Paul W. K. .
NATURE, 2016, 535 (7612) :401-+
[25]   Quantum nature of a strongly coupled single quantum dot-cavity system [J].
Hennessy, K. ;
Badolato, A. ;
Winger, M. ;
Gerace, D. ;
Atatuere, M. ;
Gulde, S. ;
Faelt, S. ;
Hu, E. L. ;
Imamoglu, A. .
NATURE, 2007, 445 (7130) :896-899
[26]   Quantum yield and excitation rate of single molecules close to metallic nanostructures [J].
Holzmeister, Phil ;
Pibiri, Enrico ;
Schmied, Juergen J. ;
Sen, Tapasi ;
Acuna, Guillermo P. ;
Tinnefeld, Philip .
NATURE COMMUNICATIONS, 2014, 5
[27]   Gold Nanofingers for Molecule Trapping and Detection [J].
Hu, Min ;
Ou, Fung Suong ;
Wu, Wei ;
Naumov, Ivan ;
Li, Xuema ;
Bratkovsky, Alexander M. ;
Williams, R. Stanley ;
Li, Zhiyong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (37) :12820-12822
[28]  
Hung AM, 2010, NAT NANOTECHNOL, V5, P121, DOI [10.1038/NNANO.2009.450, 10.1038/nnano.2009.450]
[29]   Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays [J].
Ke, Yonggang ;
Lindsay, Stuart ;
Chang, Yung ;
Liu, Yan ;
Yan, Hao .
SCIENCE, 2008, 319 (5860) :180-183
[30]  
Kershner RJ, 2009, NAT NANOTECHNOL, V4, P557, DOI [10.1038/nnano.2009.220, 10.1038/NNANO.2009.220]