Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami

被引:134
作者
Chikkaraddy, Rohit [1 ]
Turek, V. A. [1 ]
Kongsuwan, Nuttawut [2 ]
Benz, Felix [1 ]
Carnegie, Cloudy [1 ]
van de Goor, Tim [1 ]
de Nijs, Bart [1 ]
Demetriadou, Angela [2 ]
Hess, Ortwin [2 ]
Keyser, Ulrich F. [1 ]
Baumberg, Jeremy J. [1 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thompson Ave, Cambridge CB3 0HE, England
[2] Imperial Coll London, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Single-molecule; DNA origami; plasmonics; nanocavities; nanoassembly; Purcell factor; strong coupling; SERS; SPONTANEOUS-EMISSION; FLUORESCENCE ENHANCEMENT; QUANTUM DOTS; LIGHT; SHAPES; SERS; NANOSTRUCTURES; NANOPARTICLES; EXCITATION; PLACEMENT;
D O I
10.1021/acs.nanolett.7b04283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of >= 4 X 10(3) with high quantum yield (>= 50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of +/- 1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.
引用
收藏
页码:405 / 411
页数:7
相关论文
共 69 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[3]  
Altman RB, 2012, NAT METHODS, V9, P68, DOI [10.1038/NMETH.1774, 10.1038/nmeth.1774]
[4]   Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis [J].
Alvarez-Puebla, Ramon A. ;
Contreras-Caceres, Rafael ;
Pastoriza-Santos, Isabel ;
Perez-Juste, Jorge ;
Liz-Marzan, Luis M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (01) :138-143
[5]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75
[6]   THE EFFECTS OF THE INTERACTION BETWEEN RESONANCES IN THE ELECTROMAGNETIC RESPONSE OF A SPHERE-PLANE STRUCTURE - APPLICATIONS TO SURFACE ENHANCED SPECTROSCOPY [J].
ARAVIND, PK ;
METIU, H .
SURFACE SCIENCE, 1983, 124 (2-3) :506-528
[7]   TDDFT Study of the Optical Properties of Cy5 and Its Derivatives [J].
Bamgbelu, Anu ;
Wang, Jing ;
Leszczynski, Jerzy .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (10) :3551-3555
[8]   DNA Origami Nanopores [J].
Bell, Nicholas A. W. ;
Engst, Christian. R. ;
Ablay, Marc ;
Divitini, Giorgio ;
Ducati, Caterina ;
Liedl, Tim ;
Keyser, Ulrich F. .
NANO LETTERS, 2012, 12 (01) :512-517
[9]   Assembly of hybrid photonic architectures from nanophotonic constituents [J].
Benson, Oliver .
NATURE, 2011, 480 (7376) :193-199
[10]   Single-molecule optomechanics in "picocavities" [J].
Benz, Felix ;
Schmidt, Mikolaj K. ;
Dreismann, Alexander ;
Chikkaraddy, Rohit ;
Zhang, Yao ;
Demetriadou, Angela ;
Carnegie, Cloudy ;
Ohadi, Hamid ;
de Nijs, Bart ;
Esteban, Ruben ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
SCIENCE, 2016, 354 (6313) :726-729