Methyl-coenzyme M reductase genes:: Unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea

被引:153
作者
Friedrich, MW [1 ]
机构
[1] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
来源
ENVIRONMENTAL MICROBIOLOGY | 2005年 / 397卷
关键词
D O I
10.1016/S0076-6879(05)97026-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In many anoxic environments, methanogenesis is the predominant terminal electron accepting process involved in the mineralization of organic matter, which is catalyzed by methanogenic Archaea. These organisms represent a unique but phylogenetically diverse guild of prokaryotes, which can be conveniently tracked in the environment by targeting the mcrA gene as a functional marker. This gene encodes the a subunit of the methyl-coenzyme M reductase (MCR), which catalyzes the last step in methanogenesis and is present in all methanogens. Cultivation-independent analysis of methanogenic communities involves the polymerase chain reaction (PCR) amplification of the mcrA gene from extracted community DNA, comparative analysis of mcrA clone libraries, or PCR-based fingerprinting analysis by terminal restriction fragment polymorphism analysis (T-RFLP). It has also been suggested that anaerobic methane-oxidizing Archaea possess MCR, which facilitates detection of this novel group of "reverse methanogens" as well using the mcrA gene as a functional marker.
引用
收藏
页码:428 / 442
页数:15
相关论文
共 43 条
[1]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[2]  
[Anonymous], 2004, Molecular Microbial Ecology Manual
[3]   Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences [J].
Barns, SM ;
Delwiche, CF ;
Palmer, JD ;
Pace, NR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (17) :9188-9193
[4]  
Berthelet M, 1996, FEMS MICROBIOL LETT, V138, P17
[5]   A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia margin (ODP site 892B) [J].
Bidle, KA ;
Kastner, M ;
Bartlett, DH .
FEMS MICROBIOLOGY LETTERS, 1999, 177 (01) :101-108
[6]   Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities [J].
Blackwood, CB ;
Marsh, T ;
Kim, SH ;
Paul, EA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (02) :926-932
[7]  
Boone David R., 1993, P35
[8]   The structure of microbial communities in soil and the lasting impact of cultivation [J].
Buckley, DH ;
Schmidt, TM .
MICROBIAL ECOLOGY, 2001, 42 (01) :11-21
[9]   Archaeal community structure and pathway of methane formation on rice roots [J].
Chin, KJ ;
Lueders, T ;
Friedrich, MW ;
Klose, M ;
Conrad, R .
MICROBIAL ECOLOGY, 2004, 47 (01) :59-67
[10]   C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea [J].
Chistoserdova, L ;
Vorholt, JA ;
Thauer, RK ;
Lidstrom, ME .
SCIENCE, 1998, 281 (5373) :99-102