Ionic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate composites

被引:0
|
作者
Manohar, C. V. [1 ,2 ,3 ]
Mendes, Tiago Correia [3 ]
Kar, Mega [3 ]
Wang, Dabin [3 ]
Xiao, Changlong [3 ]
Forsyth, Maria [4 ]
Mitra, Sagar [1 ]
MacFarlane, Douglas R. [3 ]
机构
[1] IIT Powai, Electrochem Energy Storage Lab, Dept Energy Sci & Engn, Bombay 400076, Maharashtra, India
[2] IIT Powai, IITB Monash Res Acad, Bombay 400076, Maharashtra, India
[3] Monash Univ, ARC Ctr Excellence Electro Mat Sci, Sch Chem, Clayton, Vic 3800, Australia
[4] Deakin Univ, ARC Ctr Excellence Electro Mat Sci, Inst Frontier Mat, Burwood, Vic, Australia
关键词
POSITIVE ELECTRODE; PERFORMANCE; CATHODES; NACRO2; ANODE; CELL; LI;
D O I
10.1039/c8cc00365c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) are widely considered as alternative, sustainable, and cost-effective energy storage devices for large-scale energy storage applications. In this work, an easily fabricated sodium vanadium phosphate-carbon composite (NVP@C) cathode material shows a good rate capability, and long cycle life (89% capacity retention after 5000 cycles at a rate of 10C) with an ionic liquid electrolyte for room temperature sodium metal batteries. The electrochemical performance of a full-cell sodium ion battery with NVP@C and hard carbon electrodes was also investigated at room temperature with an ionic liquid electrolyte. The battery exhibited 368 W h kg(-1) energy density and 75% capacity retention after 100 cycles, outperforming the organic electrolyte-based devices.
引用
收藏
页码:3500 / 3503
页数:4
相关论文
共 50 条
  • [41] Sodium Acetate as Residual-Free Presodiation Additive for Enhancing the Energy Density of Sodium-Ion Batteries
    Hu, Le
    Chen, Yifu
    Zhang, Qiongfang
    Yang, Shuaiyi
    Zhang, Huangwei
    Peng, Jiayu
    Zhang, Yun
    Li, Zhen
    Huang, Yunhui
    ACS ENERGY LETTERS, 2024, 9 (03) : 1148 - 1157
  • [42] High-energy Mn-based layered cathodes for sodium-ion batteries
    Guo, Shaohua
    Zhou, Haoshen
    SCIENCE BULLETIN, 2019, 64 (03) : 149 - 150
  • [43] A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density
    Wang, Faxing
    Wang, Xiaowei
    Chang, Zheng
    Wu, Xiongwei
    Liu, Xiang
    Fu, Lijun
    Zhu, Yusong
    Wu, Yuping
    Huang, Wei
    ADVANCED MATERIALS, 2015, 27 (43) : 6962 - +
  • [44] Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries
    Xu, Mingli
    Liu, Mengchuang
    Yang, Zezhou
    Wu, Chen
    Qian, Jiangfeng
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (03)
  • [45] Acetonitrile-Based Highly Concentrated Electrolytes for High-Power Organic Sodium-Ion Batteries
    Gambe, Yoshiyuki
    Kobayashi, Hiroaki
    Honma, Itaru
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (02) : 3316 - 3323
  • [46] High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries
    Niu, Yu-Bin
    Guo, Yu-Jie
    Yin, Ya-Xia
    Zhang, Si-Yuan
    Wang, Tao
    Wang, Ping
    Xin, Sen
    Guo, Yu-Guo
    ADVANCED MATERIALS, 2020, 32 (33)
  • [47] The use of protic ionic liquids with cathodes for sodium-ion batteries
    Vogl, T.
    Vaalma, C.
    Buchholz, D.
    Secchiaroli, M.
    Marassi, R.
    Passerini, S.
    Balducci, A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (27) : 10472 - 10478
  • [48] Bimetallic Synergies Help the Application of Sodium Vanadyl Phosphate in Aqueous Sodium-Ion Batteries
    Yang, Wensheng
    Wang, Xinhai
    Lu, Shengshang
    Gao, Yue
    Gao, Tinghong
    Guo, Tong
    Xie, Quan
    Ruan, Yunjun
    CHEMSUSCHEM, 2023, 16 (08)
  • [49] Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries
    Do, Joongyeop
    Kim, Inkyung
    Kim, Heejin
    Jung, Yousung
    ENERGY STORAGE MATERIALS, 2020, 25 : 62 - 69
  • [50] Revisiting of Tetragonal NaVPO4F: A High Energy Density Cathode for Sodium-Ion Batteries
    Ling, Moxiang
    Lv, Zhiqiang
    Li, Fan
    Zhao, Junmei
    Zhang, Huamin
    Hou, Guangjin
    Zheng, Qiong
    Li, Xianfeng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (27) : 30510 - 30519