The canonical contact structure on the space of oriented null geodesics of pseudospheres and products

被引:3
作者
Godoy, Yamile [1 ]
Salvai, Marcos [1 ]
机构
[1] FaMAF CIEM, RA-5000 Cordoba, Argentina
关键词
Contact manifold; null geodesic; space of geodesics; billiards; GEOMETRY; LINES;
D O I
10.1515/advgeom-2013-0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-k,S-m be the pseudosphere of signature (k, m). We show that the space L-0 (S-k,S-m) of all oriented null geodesics in S-k,S-m is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurfaces in S-k,S-m. Further, we find a contactomorphism with some standard contact manifold, namely, the unit tangent bundle of some pseudo-Riemannian manifold. Also, we express the null billiard operator on L-0 (S-k,S-m) associated with some simple regions in S-k,S-m in terms of the geodesic flows of spheres. For the pseudo-Riemannian product N of two complete Riemannian manifolds, we give geometrical conditions on the factors for L-0 (N) to be manifolds and exhibit a contactomorphism with some standard contact manifold.
引用
收藏
页码:713 / 722
页数:10
相关论文
共 14 条
[1]   On the geometry of spaces of oriented geodesics [J].
Alekseevsky, Dmitri V. ;
Guilfoyle, Brendan ;
Klingenberg, Wilhelm .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (04) :389-409
[2]  
Anciaux H., T AM MATH S IN PRESS
[3]  
Beem JK, 1996, GEOMETRIAE DEDICATA, V59, P51
[4]  
BEEM JK, 1991, GEOMETRIAE DEDICATA, V38, P87
[5]   An indefinite Kahler metric on the space of oriented lines [J].
Guilfoyle, B ;
Klingenberg, W .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :497-509
[6]   Pseudo-Riemannian geodesics and billiards [J].
Khesin, Boris ;
Tabachnikov, Serge .
ADVANCES IN MATHEMATICS, 2009, 221 (04) :1364-1396
[7]  
Klingenberg W., 1982, DEGRUYTER STUDIES MA, V1
[8]   THE GEOMETRY OF THE SPACE OF NULL GEODESICS [J].
LOW, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (04) :809-811
[9]   The space of null geodesics [J].
Low, RJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (05) :3005-3017
[10]  
O'Neill B., 1983, PURE APPL MATH, V103