Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation

被引:14
作者
Wang, Haifeng [1 ]
Xu, Da [1 ]
Zhou, Jun [1 ]
Guo, Jing [1 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
optimal error estimate; stability; time fractional generalized Burgers' equation; weak Galerkin finite element scheme; DIFFERENCE SCHEME;
D O I
10.1002/num.22549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we use the weak Galerkin (WG) finite element method to study a class of time fractional generalized Burgers' equation. The existence of numerical solutions and the stability of fully discrete scheme are proved. Meanwhile, by applying the energy method, an optimal order error estimate in discreteL(2)norm is established. Numerical experiments are presented to validate the theoretical analysis.
引用
收藏
页码:732 / 749
页数:18
相关论文
共 26 条
[1]  
Burgers JM., 1948, Adv. Appl. Mech, V1, P171
[2]   A weak Galerkin finite element method for Burgers' equation [J].
Chen, Yanli ;
Zhang, Tie .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 :103-119
[3]   Weak Galerkin finite element method for Biot's consolidation problem [J].
Chen, Yumei ;
Chen, Gang ;
Xie, Xiaoping .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 :398-416
[4]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[5]   Analysis of L1-Galerkin FEMs for Time-Fractional Nonlinear Parabolic Problems [J].
Li, Dongfang ;
Liao, Hong-Lin ;
Sun, Weiwei ;
Wang, Jilu ;
Zhang, Jiwei .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (01) :86-103
[6]   A linear finite difference scheme for generalized time fractional Burgers equation [J].
Li, Dongfang ;
Zhang, Chengjian ;
Ran, Maohua .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (11-12) :6069-6081
[7]   A weak Galerkin least-squares finite element method for div-curl systems [J].
Li, Jichun ;
Ye, Xiu ;
Zhang, Shangyou .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 363 :79-86
[8]   Exact solutions and numerical study of time fractional Burgers' equations [J].
Li, Lili ;
Li, Dongfang .
APPLIED MATHEMATICS LETTERS, 2020, 100
[9]   A WEAK GALERKIN FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION-REACTION PROBLEMS [J].
Lin, Runchang ;
Ye, Xiu ;
Zhang, Shangyou ;
Zhu, Peng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) :1482-1497
[10]   Non-perturbative analytical solutions of the space- and time-fractional Burgers equations [J].
Momani, S .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :930-937