Facet-driven formation of axial and radial In(Ga)As clusters in GaAs nanowires

被引:5
作者
Balgarkashi, A. [1 ]
Ramanandan, S. P. [1 ]
Tappy, N. [1 ]
Nahra, M. [3 ,4 ]
Kim, W. [1 ]
Guniat, L. [1 ]
Friedl, M. [1 ]
Morgan, N. [1 ]
Dede, D. [1 ]
Leran, J. B. [1 ]
Couteau, C. [3 ,4 ]
Fontcuberta i Morral, A. [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Mat, Lab Semicond Mat, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
[3] Univ Technol Troyes, Lab Light Nanomat & Nanotechnol L2n, Troyes, France
[4] CNRS, ERL 7004, Troyes, France
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
nanowires; heterostructure; molecular beam epitaxy; quantum dots; SINGLE-PHOTON SOURCES; QUANTUM DOTS; STRAIN RELAXATION; GROWTH; EMISSION;
D O I
10.1088/2040-8986/ab9aad
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Embedding quantum dots in nanowires (NWs) constitutes one promising building block for quantum photonic technologies. Earlier attempts to grow InAs quantum dots on GaAs nanowires were based on the Stranski-Krastanov growth mechanism. Here, we propose a novel strain-driven mechanism to form 3D In-rich clusters on the NW sidewalls and also on the NW top facets. The focus is on ternary InGaAs nanowire quantum dots which are particularly attractive for producing single photons at telecommunication wavelengths. In(Ga)As clusters were realized on the inclined top facets and also on the {11-2} corner facets of GaAs NW arrays by depositing InAs at a high growth temperature (630 degrees C). High-angle annular dark-field scanning transmission electron microscopy combined with energy-dispersive x-ray spectroscopy confirms that the observed 3D clusters are indeed In-rich. The optical functionality of the as-grown samples was verified using optical technique of cathodoluminescence. Emission maps close to the NW tip shows the presence of optically active emission centers along the NW sidewalls. Our work illustrates how facets can be used to engineer the growth of localized emitters in semiconducting NWs.
引用
收藏
页数:8
相关论文
共 36 条
[1]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[2]   Surface atomic configurations due to dislocation activity in InAs/GaAs(110) heteroepitaxy [J].
Belk, JG ;
Pashley, DW ;
McConville, CF ;
Sudijono, JL ;
Joyce, BA ;
Jones, TS .
PHYSICAL REVIEW B, 1997, 56 (16) :10289-10296
[3]  
Borgström MT, 2005, NANO LETT, V5, P1439, DOI 10.1021/nl050802y
[4]   A highly efficient single-photon source based on a quantum dot in a photonic nanowire [J].
Claudon, Julien ;
Bleuse, Joel ;
Malik, Nitin Singh ;
Bazin, Maela ;
Jaffrennou, Perine ;
Gregersen, Niels ;
Sauvan, Christophe ;
Lalanne, Philippe ;
Gerard, Jean-Michel .
NATURE PHOTONICS, 2010, 4 (03) :174-177
[5]   Selective-area vapor-liquid-solid growth of tunable InAsP quantum dots in nanowires [J].
Dalacu, Dan ;
Mnaymneh, Khaled ;
Wu, Xiaohua ;
Lapointe, Jean ;
Aers, Geof C. ;
Poole, Philip J. ;
Williams, Robin L. .
APPLIED PHYSICS LETTERS, 2011, 98 (25)
[6]   Atomic Scale Strain Relaxation in Axial Semiconductor III-V Nanowire Heterostructures [J].
de la Mata, Maria ;
Magen, Cesar ;
Caroff, Philippe ;
Arbiol, Jordi .
NANO LETTERS, 2014, 14 (11) :6614-6620
[7]   Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire [J].
Deshpande, Saniya ;
Heo, Junseok ;
Das, Ayan ;
Bhattacharya, Pallab .
NATURE COMMUNICATIONS, 2013, 4
[8]   The morphology of axial and branched nanowire heterostructures [J].
Dick, Kimberly A. ;
Kodambaka, Suneel ;
Reuter, Mark C. ;
Deppert, Knut ;
Samuelson, Lars ;
Seifert, Werner ;
Wallenberg, L. Reine ;
Ross, Frances M. .
NANO LETTERS, 2007, 7 (06) :1817-1822
[9]   Coaxial Multishell (In,Ga)As/GaAs Nanowires for Near-Infrared Emission on Si Substrates [J].
Dimakis, Emmanouil ;
Jahn, Uwe ;
Ramsteiner, Manfred ;
Tahraoui, Abbes ;
Grandal, Javier ;
Kong, Xiang ;
Marquardt, Oliver ;
Trampert, Achim ;
Riechert, Henning ;
Geelhaar, Lutz .
NANO LETTERS, 2014, 14 (05) :2604-2609
[10]   Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires [J].
Dubrovskii, V. G. ;
Xu, T. ;
Alvarez, A. Diaz ;
Plissard, S. R. ;
Caroff, P. ;
Glas, F. ;
Grandidier, B. .
NANO LETTERS, 2015, 15 (08) :5580-5584