Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent

被引:268
|
作者
Hamilton, M. Kristina [1 ]
Boudry, Galle [3 ]
Lemay, Danielle G. [2 ]
Raybould, Helen E. [1 ]
机构
[1] Univ Calif Davis, Sch Vet Med, Dept Anat Physiol & Cell Biol, Davis, CA 95616 USA
[2] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
[3] INRA, Alimentat & Adaptat Digest Nerveuses & Comporteme, UR 1341, St Gilles, France
关键词
obesity; gut barrier; gut microbiota; intestinal permeability; HF diet; INDUCED OBESITY; MICE; INFLAMMATION; PERMEABILITY; ECOLOGY; ENDOTOXEMIA; EXPRESSION; CELLS;
D O I
10.1152/ajpgi.00029.2015
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
A causal relationship between the pathophysiological changes in the gut epithelium and altered gut microbiota with the onset of obesity have been suggested but not defined. The aim of this study was to determine the temporal relationship between impaired intestinal barrier function and microbial dysbiosis in the small and large intestine in rodent high-fat (HF) diet-induced obesity. Rats were fed HF diet (45% fat) or normal chow (C, 10% fat) for 1, 3, or 6 wk; food intake, body weight, and adiposity were measured. Barrier function ex vivo using FITC-labeled dextran (4,000 Da, FD-4) and horseradish peroxidase (HRP) probes in Ussing chambers, gene expression, and gut microbial communities was assessed. After 1 wk, there was an immediate but reversible increase in paracellular permeability, decrease in IL-10 expression, and decrease in abundance of genera within the class Clostridia in the ileum. In the large intestine, HRP flux and abundance of genera within the order Bacteroidales increased with time on the HF diet and correlated with the onset of increased body weight and adiposity. The data show immediate insults in the ileum in response to ingestion of a HF diet, which were rapidly restored and preceded increased passage of large molecules across the large intestinal epithelium. This study provides an understanding of microbiota dysbiosis and gut pathophysiology in diet-induced obesity and has identified IL-10 and Oscillospira in the ileum and transcellular flux in the large intestine as potential early impairments in the gut that might lead to obesity and metabolic disorders.
引用
收藏
页码:G840 / G851
页数:12
相关论文
共 50 条
  • [1] Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats
    Yu Wang
    Weifan Yao
    Bo Li
    Shiyun Qian
    Binbin Wei
    Shiqiang Gong
    Jing Wang
    Mingyan Liu
    Minjie Wei
    Experimental & Molecular Medicine, 2020, 52 : 1959 - 1975
  • [2] Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats
    Wang, Yu
    Yao, Weifan
    Li, Bo
    Qian, Shiyun
    Wei, Binbin
    Gong, Shiqiang
    Wang, Jing
    Liu, Mingyan
    Wei, Minjie
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2020, 52 (12): : 1959 - 1975
  • [3] Niacin Improves Gut Function and Microbiota Composition in High-Fat Diet-Fed Mice
    Fang, Han
    Graff, Emily C.
    Li, Zhuoyue
    Globa, Ludmila
    Sorokulova, Iryna B.
    Judd, Robert L.
    DIABETES, 2017, 66 : LB82 - LB83
  • [4] Changes in the gut microbiota in response to berberine in obese rats fed a high-fat diet
    Zhu, Chaoxia
    Cang, Zhen
    Ya, Jiazhire
    Li, Qin
    Pu, Xiaoqi
    Xia, Fangzhen
    Lu, Yingli
    DIABETES-METABOLISM RESEARCH AND REVIEWS, 2014, 30 : 42 - 42
  • [5] A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota
    Zhao, Le
    Zhang, Qi
    Ma, Weini
    Tian, Feng
    Shen, Hongyi
    Zhou, Mingmei
    FOOD & FUNCTION, 2017, 8 (12) : 4644 - 4656
  • [6] Sesamolin Attenuates Kidney Injury, Intestinal Barrier Dysfunction, and Gut Microbiota Imbalance in High-Fat and High-Fructose Diet-Fed Mice
    Yang, Yang
    Yu, Jing
    Huo, Jiayao
    Yan, Yaping
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (03) : 1562 - 1576
  • [7] IgA-Targeted Lactobacillus jensenii Modulated Gut Barrier and Microbiota in High-Fat Diet-Fed Mice
    Sun, Jin
    Qi, Ce
    Zhu, Hualing
    Zhou, Qin
    Xiao, Hang
    Le, Guowei
    Chen, Daozhen
    Yu, Renqiang
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [8] Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice
    Wang, Qiong
    Zhang, Ling
    He, Yalun
    Zeng, Lirong
    He, Juncheng
    Yang, Yang
    Zhang, Tongcun
    JOURNAL OF FUNCTIONAL FOODS, 2021, 86
  • [9] Ferulic acid combined with different dietary fibers improve glucose metabolism and intestinal barrier function by regulating gut microbiota in high-fat diet-fed mice
    Fang, Wei
    Peng, Wenting
    Qi, Wentao
    Zhang, Jianan
    Song, Ge
    Pang, Shaojie
    Wang, Yong
    JOURNAL OF FUNCTIONAL FOODS, 2024, 112
  • [10] Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats
    Yang, Chen
    Deng, Qianchun
    Xu, Jiqu
    Wang, Xu
    Hu, Chao
    Tang, Hu
    Huang, Fenghong
    FOOD RESEARCH INTERNATIONAL, 2019, 116 : 1202 - 1211