LARFNet: Lightweight asymmetric refining fusion network for real-time semantic segmentation

被引:14
作者
Hu, Xuegang [1 ]
Gong, Juelin [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Signal & Informat Proc, Chongqing 400065, Peoples R China
来源
COMPUTERS & GRAPHICS-UK | 2022年 / 109卷
关键词
Attention mechanism; Lightweight network; Encoder-decoder architecture; Real-time semantic segmentation;
D O I
10.1016/j.cag.2022.10.002
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a lightweight asymmetric refining fusion network (LARFNet) for real-time semantic segmentation to solve the problem that some existing models cannot achieve good segmentation accuracy with real-time inference speed in mobile devices due to the huge computational overhead. Specifically, LARFNet adopts an asymmetric encoder-decoder structure. The depth-wise separable asymmetric interaction module (DSAI module) is designed in the encoding process, which effectively extracted local and surrounding information under different receptive fields with optimized convolution in the condition of ensuring communication between channels. In the decoder, we design the bilateral pyramid pooling attention module (BPPA module) and the multi-stage refinement fusion module (MRF Module). The BPPA module is used to integrate the high-level output multi-scale context information. Based on spatial and channel attention mechanisms, the MRF module is proposed to refine the feature maps of different resolutions and guide the feature fusion. Experimental results show that LARFNet achieves 69.2% mIoU and 65.6% mIoU on Cityscapes and Camvid datasets at 127 FPS and 222 FPS respectively, only using a single NVIDIA GeForce GTX2080Ti GPU and 0.72M parameters without any pre-training or pre-processing. Compared with most of the existing state-of-the-art models, the proposed method realizes the efficient use of network parameters at a faster speed, reduces the number of network parameters, and still achieves the accuracy of good segmentation.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 51 条
[1]   Segmentation and Recognition Using Structure from Motion Point Clouds [J].
Brostow, Gabriel J. ;
Shotton, Jamie ;
Fauqueur, Julien ;
Cipolla, Roberto .
COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 :44-+
[2]  
Chen PR, 2020, IEEE T SIGNAL INF PR, P9
[3]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[4]   Semantic Correlation Promoted Shape-Variant Context for Segmentation [J].
Ding, Henghui ;
Jiang, Xudong ;
Shuai, Bing ;
Liu, Ai Qun ;
Wang, Gang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8877-8886
[5]   Rethinking BiSeNet For Real-time Semantic Segmentation [J].
Fan, Mingyuan ;
Lai, Shenqi ;
Huang, Junshi ;
Wei, Xiaoming ;
Chai, Zhenhua ;
Luo, Junfeng ;
Wei, Xiaolin .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9711-9720
[6]   Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges [J].
Feng, Di ;
Haase-Schutz, Christian ;
Rosenbaum, Lars ;
Hertlein, Heinz ;
Glaser, Claudius ;
Timm, Fabian ;
Wiesbeck, Werner ;
Dietmayer, Klaus .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) :1341-1360
[7]   FBSNet: A Fast Bilateral Symmetrical Network for Real-Time Semantic Segmentation [J].
Gao, Guangwei ;
Xu, Guoan ;
Li, Juncheng ;
Yu, Yi ;
Lu, Huimin ;
Yang, Jian .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :3273-3283
[8]   MSCFNet: A Lightweight Network With Multi-Scale Context Fusion for Real-Time Semantic Segmentation [J].
Gao, Guangwei ;
Xu, Guoan ;
Yu, Yi ;
Xie, Jin ;
Yang, Jian ;
Yue, Dong .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) :25489-25499
[9]   Using Channel-Wise Attention for Deep CNN Based Real-Time Semantic Segmentation With Class-Aware Edge Information [J].
Han, Hsiang-Yu ;
Chen, Yu-Chi ;
Hsiao, Pei-Yung ;
Fu, Li-Chen .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (02) :1041-1051
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778